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While editing code, it is common for developers to make multiple related repeated edits that are all instances

of a more general program transformation. Since this process can be tedious and error-prone, we study the

problem of automatically learning program transformations from past edits, which can then be used to predict

future edits. We take a novel view of the problem as a semi-supervised learning problem: apart from the

concrete edits that are instances of the general transformation, the learning procedure also exploits access

to additional inputs (program subtrees) that are marked as positive or negative depending on whether the

transformation applies on those inputs. We present a procedure to solve the semi-supervised transformation

learning problem using anti-unification and programming-by-example synthesis technology. To eliminate

reliance on access to marked additional inputs, we generalize the semi-supervised learning procedure to a

feedback-driven procedure that also generates the marked additional inputs in an iterative loop. We apply these

ideas to build and evaluate three applications that use different mechanisms for generating feedback. Compared

to existing tools that learn program transformations from edits, our feedback-driven semi-supervised approach

is vastly more effective in successfully predicting edits with significantly lesser amounts of past edit data.
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1 INTRODUCTION

Integrated Development Environments (IDEs) and static analysis tools help developers edit their

code by automating common classes of edits, such as boilerplate code edits (e.g., equality com-

parisons or constructors), code refactorings (e.g., rename class, extract method), and quick fixes

(e.g., fix possible NullReferenceException). To automate these edits, tool builders implement

code transformations that manipulate the Abstract Syntax Tree (AST) of the user’s code to produce

the desired code edit.

While traditional tools support a predefined catalog of transformations handcrafted by tool

builders, in recent years, we have seen an emerging trend of tools and techniques that synthesize

program transformations using examples of code edits [Bader et al. 2019; Meng et al. 2011, 2013;

Miltner et al. 2019; Rolim et al. 2017, 2018]. For instance, Getafix [Bader et al. 2019] learns fixes for

static analysis warnings using previous fixes as examples. It has been deployed at Facebook where

it is used for the maintenance of Facebook apps. BluePencil [Miltner et al. 2019] produces code

edit suggestions to automate repetitive code edits, i.e., edits that follow the same structural pattern

but that may involve different expressions. It synthesizes transformations on-the-fly based on the

recent edits performed by the developer. BluePencil has been released in Microsoft Visual Studio

2019 [Microsoft 2019] and is available as Visual Studio IntelliCode suggestions [Microsoft 2020].

The main challenge of generalizing examples of edits to program transformations lies in synthe-

sizing an intended generalization that not only satisfies the given examples but also produces the

correct edits on unseen inputs. Incorrect generalizations can lead to false negatives: the transfor-
mation does not produce an edit suggestion in a location that should be changed. False negatives

increase the burden on developers, since it requires developers to either provide more examples or

perform the edits themselves, reducing the number of automated edits. Moreover, it may cause

developers to miss edits leading to bugs and inconsistencies in the code. Incorrect generalizations

can also lead to false positives: the transformation produces an incorrect edit. While false negatives

are usually related to transformations that are too specific, false positives are mostly related to

transformations that are too general. Both false negatives and positives can reduce developers’

confidence in the aforementioned systems, and thus, finding the correct generalization is crucial

for the adoption of these systems.

Existing approaches have tried to handle the generalization problem in different ways.

Sydit [Meng et al. 2011] and Lase [Meng et al. 2013] can only generalize names of variables,

methods and fields when learning a code transformation. The former only accepts one example and

synthesizes the transformation using the most general generalization. The latter accepts multiple

examples and synthesizes the transformation using the most specific generalization, which is

also the approach adopted by Revisar [Rolim et al. 2018] and Getafix [Bader et al. 2019]. Using

either the most specific or the most general generalization is usually undesirable, as they are likely

to produce false negatives and false positives, respectively. ReFazer [Rolim et al. 2017] learns a

set of transformations consistent with the examples and stores them as a Version Space Algebra

(VSA) [Mitchell 1982]. It then uses a ranking system to rank the transformations and selects the

one that is more likely to be correct based on a set of predefined heuristics. However, despite the

more sophisticated approach to generalization, in certain cases, ReFazer still requires up to six

examples of a repetitive edit before producing edit suggestions [Rolim et al. 2017].

All aforementioned techniques rely only on input-output examples of edits and background

knowledge in the form of ranking schemes and heuristics to deal with the generalization problem.

However, apart from these, an additional source of information could be the large number of

additional input trees available in the remainder of the file and project the user is editing. Semi-

supervised learning [Zhu and Goldberg 2009] is an approach to machine learning that combines a
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set of labeled input-output examples and unlabeled data (inputs) during training. It has recently

become more popular and practical due to the variety of problems for which vast quantities of

unlabeled data are available, e.g. text on websites, protein sequences, or images [Zhu 2005]. The

fact that many additional inputs are available in source code inspires a natural question:

Is it possible to combine input-output examples with additional inputs to synthesize program transformations?

Our first key observation is that an additional input AST can help us disambiguate how to

generalize the transformation by providing more examples of ASTs that should be manipulated by

the transformation. Consider a simple change from if (score < limit) to if (IsValid(score)).
With a single example, it is not clear whether we do the transformation only when the left-hand

side of the comparison is score. However, if one says that the transformation should also apply

to if (GetScore(run) < limit), then we have one more example for the LHS expression,

GetScore(run), and we can use this example to refine our transformation—in this case, generalize

it further. However, we still need to identify the locations in the source code (the additional inputs)

where the transformation should apply. Our second key observation is that we can predict whether

an arbitrary input should be an additional input by evaluating the quality of the transformation

synthesized when using the new input. The quality is assessed using a user-driven or automated

feedback system.

We propose a feedback-driven semi-supervised technique to synthesize program transformations.

The proposed approach is based on our two key observations above. Initially, our technique

synthesizes a program transformation from input-output examples using ReFazer [Rolim et al.

2017]. For the input-output example, it tracks which subtrees of the AST (corresponding to a

sub-expression) were used to construct the output, and can potentially be generalized. We call

these nodes selected nodes. As an example, consider again the change if (score < limit)
to if (IsValid(score)). The expression score was used in the output—it is a selected node.

Next, our technique iterates over candidate additional inputs to find more examples to refine the

generalization. For each candidate input, it performs two main steps:

• First, our technique computes the anti-unification of the examples and the candidate additional

input. Anti-unification is a generalization process which can identify corresponding subtrees

among different input ASTs. For instance, it can identify that score in the example input corre-

sponds to GetScore(run) in the candidate additional input if (GetScore(run) < limit). Our
anti-unification based generalization algorithm tries to compute a generalization where each se-

lected node in the example input has a corresponding node in the candidate additional input. For

example, if the candidate additional input was if (UnrelatedCondition()), then we can infer

the correspondence between (score < limit) and (UnrelatedCondition()), and the subtree
score itself has no corresponding subtree, which causes anti-unification to fail to find a general-

ization. If anti-unification fails, the candidate additional input is not compatible and we discard

it. Otherwise, we generate a new example from the candidate additional input, and re-synthesize

parts of the transformation while taking this example into consideration. In our running scenario,

the new example is if (GetScore(run) < limit) ↦→ if (IsValid(GetScore(run))).
• Then, our technique uses a feedback system to further evaluate whether the current candidate

input should be accepted. The feedback is provided by a reward function that can be composed

of different components. It can take into consideration user-provided feedback, for example, if

the transformation should apply to a particular input. Indicating such inputs is usually an easier

task for the user than providing another input-output example. However, the feedback can also

use automated components based on, for example, the similarity of the additional input to the

example inputs. If the final reward score is above a certain threshold, it accepts the additional

input and synthesizes a new program transformation using the new example.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.



219:4 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

We implemented our technique for the domain of C# program transformations. It uses the

implementation of ReFazer available in the PROSE SDK
1
. Further, we augmented the BluePen-

cil algorithm [Miltner et al. 2019] with our approach to synthesize on-the-fly transformations.

BluePencil provides a modeless interface where developers do not need to enter a special mode to

provide examples, but instead, they are inferred from the history of changes to a particular file.

With these components, we implemented three applications that use feedback-driven semi-

supervised synthesis:

• ReFazer
∗
: User-provided feedback about additional inputs. This application allows developers

to specify, as an additional input, a subtree where the transformation did not produce an edit

(false negative). This implementation is motivated by the fact that when the transformation-

learning system produces a false negative, it is easier for the developer to provide an additional

input rather than a complete input-output example. On a benchmark of 12,642 test cases, we

compared ReFazer
∗
with the baseline (ReFazer). While the recall of ReFazer ranged from

26.71% (1 example provided) to 89.10% (3 examples provided), the recall of ReFazer
∗
was at least

99.94% and its precision was at least 96.01% with just 1 example and 1 additional input provided.

These results suggest that ReFazer
∗
can synthesize suggestions with high precision at locations

indicated by developers as false negatives.

• BluePencil cur: Semi-automated feedback based on cursor position. This feature uses the cursor
position in the editor to indicate candidate additional inputs to semi-supervised synthesis. This

feature is motivated by the fact that the developers may either not be aware that they can provide

additional inputs (discoverability problem [Miltner et al. 2019]), or may not want to break their

workflow to provide additional inputs. The cursor position acts as a proxy for the user and

indicates, implicitly, that the user wants to modify the current location. However, the cursor

location is ambiguous. The subtree that the user wants to edit may be any of the subtrees that

are present at the cursor location, i.e., the lowest leaf node at the cursor location all the way to

the root of the AST. The tool relies on feedback from a reward function (Section 4.2) to accept

additional inputs. We compared this reward function with two alternative reward functions: (i) no
validation, where semi-supervised synthesis accepts any additional inputs; (ii) and clone detection
where semi-supervised synthesis accepts inputs based on their similarities with the inputs in

the input-output examples. Our results show that while "no validation" and "clone detection"

lead to high false positives and negatives, respectively, our reward function produces only 11

false positives and 14 false negatives on 243,682 tested additional inputs. We also evaluated the

effectiveness of BluePencilcur in generating correct suggestions at the cursor location. Amongst

291 scenarios, BluePencil cur only generates one false positive and three false negatives.

• BluePencilauto: Fully-automated feedback based on all inputs in the source code. This feature uses
all the nodes available in the source code as input to semi-supervised synthesis. It is relevant in

the settings where user feedback is not available. For example, (a) when the developer themselves

may not be aware of all locations that must be changed, or (b) when the developer may want

to apply the edits in bulk, instead of inspecting each one for correctness. We evaluated how

often BluePencil auto can save developers from indicating the additional inputs. To do so, we

simulated a developer performing 350 repetitive edits with BluePencil cur and BluePencil auto
enabled or just BluePencil enabled. In our experiment, BluePencil auto decreased the number

of times the developer would have to indicate the input by 30%. When compared to BluePencil,

our results show that BluePencilcur and BluePencilauto automated 263 edits while BluePencil

automated only 159.

Contributions. We summarize the contributions of this paper as follows:

1
https://www.microsoft.com/en-us/research/group/prose/
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• We formalize the feedback-driven semi-supervised synthesis problem (Section 3);

• We propose semi-supervised synthesis for program transformations (Section 4), which is the

first known semi-supervised synthesis technique in this field;

• We propose three practical applications based on semi-supervised synthesis and instantiate them

for the domain of C# program transformations (Section 5);

• We evaluate our technique along the dual axes of effectiveness (quality as measured by false

positive and negative rates) and efficiency (user burden as measured by the number of examples

and additional inputs). Our results show that our technique achieves precision of over 96% with

near-perfect recall across 86 real-world developer scenarios, all while delivering each suggestion

in less than half a second.

Remark 1.1. In this paper, the term semi-supervised is used in a subtly different manner than in

the traditional machine learning context. In both settings, additional unlabelled inputs are used to

aid learning. However, in machine learning, the additional unlabelled inputs are used to understand

the structure and distribution of the input space. On the other hand, in our setting, additional

inputs are used to generate new input-output examples along the lines of existing labeled examples,

using the structure of individual additional input trees. In other words, semi-supervised machine

learning exploits the structure of the input space, while we use the structure of individual inputs.

2 MOTIVATING EXAMPLE

We start by illustrating the challenges of synthesizing code transformations from input-output

examples. Consider the scenario shown in Figure 1.

A C# developer working on the NuGet
2
codebase has refactored the ResolveDependencymethod

to make it static, then moved it to the new static class DependencyResolveUtility. As a result, the
developer must update all invocations of this method to match its new signature. Figure 1a shows

two call sites where the developer has manually updated the invocation to match this signature.

Figures 1b and 1c show additional locations that will require a similar modification: note that they

share the same general structure but contain dissimilar subexpressions. Manually performing such

repetitive edits is tedious, error-prone, and time-consuming. Unfortunately, developer tools such as

the Visual Studio IDE [Microsoft 2019] and ReSharper [JetBrains 2020b] do not include built-in

transformations or refactorings to automate these edits.

However, a recently introduced Visual Studio feature based on BluePencil [Miltner et al. 2019],

called IntelliCode suggestions (IntelliCode for brevity in the remainder of this paper), can learn to

automate these edits after watching the developer perform a handful of edits. Specifically, after

watching edits to the two locations shown in Figure 1a, IntelliCode learns a transformation and

suggests automated edits to the locations shown in Figure 1b.

With only these two examples, however, IntelliCode is not yet able to produce suggestions

for the locations shown in Figure 1c. These are false negatives. This is because the inputs in

the examples provided so far differed only in their first method argument: dependency1 and

dependency2, respectively. As a result, IntelliCode synthesizes a transformation that generalizes

across variation in the first argument, but not the others. While sufficient to suggest edits for

the locations in Figure 1b, this transformation is not sufficiently general to apply to the locations

shown in Figure 1c, which contain additional variation in the call target, third argument, and fifth

argument (Marker, AllowPrereleaseVersions, and Highest, respectively).
To address this situation, the developer performs another manual edit at the first location in

Figure 1c. IntelliCode consumes this edit as a new example and synthesizes a new transformation

to generalize across variation in both the first and fifth arguments: IntelliCode has disambiguated

2
Nuget is a package manager for .NET
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(a) Two repetitive edits. Both edits update invocations to the method ResolveDependency but one of
the arguments is different. Given these two edits, IntelliCode synthesizes a transformation to automate

similar edits.

- repository.ResolveDependency(dependency1, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency1, null, false, false,

Lowest);

- repository.ResolveDependency(dependency2, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency2, null, false, false,

Lowest);

(b) IntelliCode correctly produces suggestions at these locations based on the previous edits. The first

argument is the only difference between these locations, similar to the examples.

repository.ResolveDependency(dependency3 , null , false , false , Lowest);
repository.ResolveDependency(dependency4 , null , false , false , Lowest);

(c) IntelliCode fails to produce suggestions to these locations (false negative). Note that there are more

elements that are different in these locations compared to the locations in the examples.

repository.ResolveDependency(dependency1 , null , false , false , Highest);
repository.ResolveDependency(dependency2 , null , false , false , Highest);
Marker.ResolveDependency(dependency , null , AllowPrereleaseVersions , false ,

Highest);

(d) While this location shares the same structure as the previous ones, the transformation should not

produce an edit here.

- s.GetUpdates(IsAny<IEnumerable<IPackage>>(), false, false,
+ DependencyResolverUtility.GetUpdates(s, IsAny<IEnumerable<IPackage>>(), false, false,

IsAny <IEnumerable <FrameworkName >>(), IsAny <IEnumerable <IVersionSpec >>())

Fig. 1. A scenario with two repetitive edits (input-output examples), additional inputs, and a false positive.

All inputs share the same structure (a method invocation with 5 arguments).

the developer’s intent because the new example contains a different variable (Highest rather than

Lowest) in the final argument. At this point, IntelliCode is now able to produce correct suggestions

for all locations that differ only in their first or last argument. Unfortunately, despite having seen

three input-output examples, it still fails to produce suggestions for the last location in Figure 1c.

In general, false negatives like those described stem from insufficiently general transformations–

they overfit to the given examples. They not only reduce the applicability of the tool but also

frustrate developers, who naturally expect an edit suggestion to automate their task after having

already supplied several examples. The line between too specific and too general can be thin, though.

In this scenario, the desired transformation should produce edits on invocations of the instance

method ResolveDependency using 5 arguments. If we generalize the name of the method to any

method, it will lead to false positives. For instance, it would produce the edit shown in Figure 1d.

Our Solution. We now illustrate how a system based on semi-supervised synthesis can help

alleviate this problem. BluePencil cur uses the cursor position in the editor to indicate candidate

additional inputs to our semi-supervised synthesis technique. Consider the first false negative

shown in Figure 1c. As soon as the developer places the cursor in the location related to the false

negative, BluePencil cur uses our semi-supervised feedback synthesis technique to improve the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.
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Fig. 2. BluePencilcur implemented as a Visual Studio Extension. The developer clicks on a line to manually

edit the code where the PBE system produced a false negative. BluePencilcur uses feedback-driven program-

synthesis to synthesize a transformation that is general enough to be applied to this location. The edit

generated by the transformation is shown as an auto-completion suggestion.

transformation. The new transformation produces an auto-completion suggestion for the current

location (see Figure 2). We provide details of our technique and its applications in Sections 4 and 5,

resp. In the next section, we formalize the problem of feedback-driven semi-supervised synthesis.

3 THE SEMI-SUPERVISED SYNTHESIS PROBLEM

We first formalize the semi-supervised synthesis problem and then discuss the feedback-driven

semi-supervised synthesis problem.

3.1 Preliminaries and Problem Statements

Abstract Syntax Trees. Let T denote the set of all abstract syntax trees (AST). We use the notation

𝑡 to denote a single AST in T, and use the notation SubTrees(𝑡) ⊆ T to denote the set of all subtrees
in 𝑡 . Each node in the AST consists of a string label representing the node type (e.g., Identifier,

MethodDeclaration, InvokeExpression, etc), set of attributes (e.g., text value of leaf nodes, etc) and

a list of children ASTs.

Edit Programs. An edit program3 P : T ̸→ T is a partial function
4
that maps ASTs to ASTs. In

this paper, we assume that each edit program P is a pair (Pguard,Ptrans) of two parts: (a) a guard
Pguard : T→ B, and (b) a transformer Ptrans : T ̸→ T. We have that P(𝑡) = Ptrans (𝑡) when Pguard (𝑡)
is true, and P(𝑡) = ⊥ otherwise.

Example 3.1. Consider the two edits shown in Figure 1a. For each edit, the following edit program
maps the subtree before the change to the subtree after the change.

Pguard = Input matches X1.X2 (X3,X4,X5,X6,X7) where
| X1.label = Identifier ∧ X1.Attributes.TextValue = repository

| X2.label = Identifier ∧ X2.Attributes.TextValue = ResolveDependency

| X3.label = X4.label = · · · = Argument ∧ X4.Attributes[TextValue] = null ∧ . . .

Ptrans = return DependencyResolveUtility.X2 (X1,X3,X4,X5,X6,X7)

3
We also refer to edit programs more generally as transformations.

4
In this paper, we consistently use ̸→ to denote partial functions.
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ReFazer learns this program initially in Section 2 (with just 2 examples). This program is written

in terms of templates with each Xi representing a hole. In Section 3.2, we present a domain-specific

language to express such programs.

The Semi-Supervised Synthesis Problem. As explained in Section 2, the semi-supervised syn-

thesis problem is the core piece among the techniques in this paper. Semi-supervised synthesis

allows a user or an environment to finely control the level of generalization used by the synthe-

sizer. The formal definition of the problem is as follows. Given (a) a set of input-output examples

Examples = {i0 ↦→ o0, . . . , i𝑘 ↦→ o𝑘 }, (b) a set of additional positive inputs PI = {pi0, . . . , pi𝑛}, and
(c) a set of additional negative inputs NI = {ni0, . . . , ni𝑚}, the semi-supervised synthesis problem
is to produce a program P such that (a) ∀0 ≤ 𝑗 ≤ 𝑘.P(i𝑗 ) = o𝑗 , (b) ∀0 ≤ 𝑗 ≤ 𝑛.P(pi𝑗 ) ≠ ⊥, and
(c) ∀0 ≤ 𝑗 ≤ 𝑚.P(ni𝑗 ) = ⊥. Intuitively, the problem asks for a program that is consistent with the

provided examples, produces outputs on all additional positive inputs, and does not produce an out-

put on any additional negative inputs. The over-generalization and under-generalization problem

can be addressed by providing more additional negative and positive examples, respectively.

The Feedback-Driven Semi-Supervised Synthesis Problem. The semi-supervised synthesis prob-

lem assumes access to positive and negative additional inputs, but how do we find (more of) them

to help refine the synthesized program? We use feedback from either the user or the environment

to discover these additional inputs. In this setting, the synthesizer is provided with the following

components: (a) A finite pool of inputs InputPool ⊆ T. We assume that all example inputs and

additional (positive or negative) inputs are drawn from the input pool InputPool. In practice, the

input pool is usually the set of all subtrees of the AST representing a source file. (b) A reward
function Rew : InputPool ̸→ [−∞,∞] that acts as a feedback mechanism. A high and a low reward

for an i ∈ InputPool indicates whether the synthesized program should be applicable to i or not,
respectively. For exposition purposes, we separate the reward function into the user provided RewU
and environment provided RewE reward functions with Rew being a combination of the two. In

Section 4.2, we define feedback oracles which take as input the state of the feedback loop (i.e.,

examples, positive and negative inputs, synthesized program) and return a reward function. While

we could merge the notion of feedback oracle and reward function, with reward function taking

additional inputs mentioned, this separation allows for easier notation.

The rewards are generated from a number of factors including (a) if the user manually indicates

whether an input from the input pool should be positively or negatively marked, (b) whether

applying a produced edit leaves the source code document in a compilable state, and (c) whether

the produced edit for an input is similar to or different from the given examples.

This workflow proceeds in multiple rounds of interaction. In the 𝑛𝑡ℎ iteration of the workflow,

• The synthesizer, using the examples and the reward function Rew𝑛−1, produces a program
P𝑛 that is consistent with the examples Examples and the positive (and negative) additional

inputs deduced from Rew𝑛−1.
• Optionally, the user adds new examples to the set of Examples to produce Examples𝑛 .
• The user and the environment in conjunction produce the rewards Rew𝑛 : SubTrees(𝑡𝑛) ̸→
[−∞,∞] to provide feedback on how P𝑛 is to be refined in the next iteration to produce P𝑛+1.

This workflow is a continuous interaction between the environment and the user on one side,

and the synthesizer on the other. This continuous interaction using rewards is reminiscent of a

reinforcement learning scenario. However, in our setting, the user and the environment cannot

be modeled as a Markov decision process, and the state space is non-continuous infinite, making

standard reinforcement learning techniques not applicable.

Due to the user-in-the-loop nature of the feedback-driven semi-supervised synthesis workflow, it

is infeasible to define an explicit correctness condition for the problem. The real optimality criterion
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program := (guard, transformer) transformer := construct | select
guard := pred | Conjunction(pred, guard) construct := Tree(kind, attrs, children)
pred := IsNthChild(node, n) children := EmptyChildren | Cons(node, children)

| IsKind(node, kind) | InsertChild(Children(select), pos, node)
| Attribute(node, attr) = value | DeleteChild(Children(select), pos)
| Not(pred) | ReplaceChildren(Children(select), posList, children)

| MapChildren(𝜆 input: transformer, Children(select))
node := Path(input, path) select := Nth(Filter(guard, SubTrees(input)), n)

pos := n | ChildIndexOf(node)

Variables:
AST input; List<int> posList; XPath path;
int n; string kind, attr, value; Dictionary<string, string> attrs;

Fig. 3. Domain-specific language for edit programs

for the synthesized program is how well does the synthesized program match user intent? This

criterion is hard to capture formally in any meaningful way. Further, depending on the scenario,

the same program may either be correct or incorrect. For example, in the case from Section 2, in a

slightly different scenario, it is quite possible that the under-generalized transformer generated

initially is the intended transformation. It is impossible to guess without semantic knowledge about

the domain of the source code, which we are consciously keeping out-of-scope here.

However, we do have a quiescence condition on the environment and the synthesizer combined:

when the user-dependent feedback stops changing (i.e., RewU is fixed), the synthesized program

should converge to a fixed one. Note that quiescence may be impossible under the situation where

the user keeps adding more feedback or positive and negative examples. Due to the lack of strict

correctness conditions, to ensure the quality of the programs and edits produced, we experimentally

validate the techniques with a comprehensive evaluation (Section 6).

3.2 Background: Programming-by-Example for Code

Programming-by-Example (PBE) forms the basis of the techniques in our proposed solution. For

a given input domain I, output domain O, and class of programs Programs, a programming-by-

example technique takes as input a set of examples {i0 ↦→ o0, . . . , i𝑛 ↦→ o𝑛} and produces a program
P : I→ O such that P(i𝑘 ) = o𝑘 for all 0 ≤ 𝑘 ≤ 𝑛. In our setting, we fix I = T and O = T.

We use a slightlymodified version of ReFazer [Rolim et al. 2017] as our programming-by-example

engine. In ReFazer, the programs are drawn from the domain-specific language (DSL) shown in

Figure 3. The programs are composed of guards and transformers. Guards are the conjunction

of predicates over nodes of the AST. The nodes are identified using XPath like queries and the

predicates test the label, attributes, or position of the nodes. Transformers are two types:

• Selections: A select returns a subtree of the input. The subtree is identified as the 𝑛𝑡ℎ node

that satisfies a guard.

• Constructions: A construct returns a subtree that is built by specifying the kind of node, its

attributes, and its children. The children may be constructed using several different operators.

For example, the operator InsertChild(select, pos, node) selects a node (called parent)
from the input and returns the parent’s children with an additional node at the position pos.

We do not provide details on how ReFazer synthesizes programs given examples. However, one

important aspect of the ReFazer synthesis algorithm is that it prefers selections over constructions,

i.e., when a particular subtree of the output can be selected from the input AST, ReFazer returns a

program with the selection. The reader is referred to [Polozov and Gulwani 2015; Rolim et al. 2017]

for further details.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.



219:10 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Input Pool

User

+

Environment

RewardsProgram

∃pi : Rew(pi) > 𝑝

∃ni : Rew(ni) < 𝑛

Semi-Supervised

Synthesis

Positive Inputs

Examples

Negative Inputs

Add pi to Positive Inputs

Add ni to Negative Inputs

Fig. 4. Solution for the feedback-driven semi-supervised problem

Example 3.2. Let us revisit the edits in Example 3.1 . ReFazer synthesizes the following trans-

former: X1.X2(X3,X4,X5,X6,X7) ̸→ DependencyResolveUtility.X2 (X1,X3,X4,X5,X6,X7). The
ReFazer program that represents this transformer is

Tree(CallExpression, [], Cons(
Tree(DotExpression, [], Cons(

Tree(Identifier, [TextValue=DependencyResolveUtility], EmptyChildren),
Cons(select1, EmptyChildren))),

Cons(select2, select3)))

where, select1, select2, and select3 extract the fragments X2, X1, and X3,X4,X5,X6,X7 re-

spectively. Each select is specified by a guard, for example, the select1 guard might be of the form

IsKind(Current, Identifier) ∧ Attribute(Current, TextValue) = ResolveDependency∧
IsKind(Parent, DotExpression) ∧ . . ..

Over-generalization and Under-generalization. Input-output examples are inherently an under-

specification of the intended program, and any programming-by-example technique needs to

generalize inductively from the examples. Developers view false positives more unfavorably than

false negatives—it causes them to lose trust in the tool [Bessey et al. 2010]. Hence, many synthesis

techniques, including ReFazer, used in the source code transformation domain err on the side of

under-generalization (for examples, see [Bader et al. 2019; Meng et al. 2013; Rolim et al. 2017]).

4 FEEDBACK-DRIVEN SEMI-SUPERVISED SYNTHESIS

We present our technique to address the feedback-driven semi-supervised synthesis problem. This

solution approach is depicted in Figure 4 and works as follows:

• In each round, the feedback-driven problem with real number feedback is converted into an

instance of the semi-supervised synthesis problem. We achieve this reduction by choosing

thresholds 𝑝 and 𝑛, with PI = {i ∈ InputPool | Rew𝑛−1 (i) > 𝑝} and NI = {i ∈ InputPool |
Rew𝑛−1 (i) < 𝑛}.
• The semi-supervised synthesis is solved using a standard (not semi-supervised) program

synthesizer. To ensure that the synthesized program produces outputs on the additional

positive inputs, we generate new examples by associating each additional positive input pi
with an output po. This output is produced using a given example i ↦→ o, and a combination

of provenance analysis and anti-unification. Informally, we first associate each subtree 𝑠 ′

of pi with an equivalent subtree 𝑠 of i. Then, in o we replace each subtree generated from

a subtree 𝑠 of the input i, with a new subtree that is generated in a similar way but with 𝑠

replaced by 𝑠 ′.
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4.1 Semi-Supervised Synthesis

Algorithm 1 Semi-supervised synthesis

Input: Input-output examples Examples = {i0 ↦→ o0, . . . , i𝑘 ↦→ o𝑘 }
Input: Additional positive inputs PI = {pi0, . . . , pi𝑛}
Input: Additional negative inputs NI = {ni0, . . . , ni𝑚}
Output: Program P
1: Inputs← {i | (i ↦→ o) ∈ Examples}
2: Pguard ← ReFazerguard (Inputs ∪ PI,NI)
3: Ptrans ← TransSynth(Examples,PI)
4: if Pguard = ⊥ ∨ Ptrans = ⊥ then return ⊥
5: return (Pguard,Ptrans)
6:

7: function TransSynth(Examples,PI)
8: Ptrans ← ReFazertrans (Examples)
9: 𝜋 ← Provenance(i0 ↦→ o0,Ptrans)
10: (𝜏, ⟨𝜎0, . . . , 𝜎𝑘 , 𝜎 ′0, . . . , 𝜎

′
𝑛⟩) ← ⊲⊳𝜋 {i0, . . . , i𝑘 , pi0, . . . , pi𝑛}

11: if ⊥ ∈ (𝜎0, . . . , 𝜎𝑘 , 𝜎 ′0, . . . , 𝜎
′
𝑛) then return ⊥

12: AdditionalExamples← {pi𝑗 → Evaluate∗ (Ptrans, pi, i) | pi𝑗 ∈ PI}
13: return ReFazertrans (Examples ∪ AdditionalExamples)

Algorithm 1 depicts a procedure for the semi-supervised synthesis problem. In the procedure,

we use ReFazerguard and ReFazertrans as oracles. Oracle ReFazerguard takes positive inputs and

negative inputs, and produces a guard that is true on the former and false on the latter. Oracle

ReFazertrans takes a set of examples and produces a transformer consistent with them.

The guard synthesis component of the algorithm (line 2) falls back to ReFazerguard. However,

transformer synthesis is significantly more involved. First, using only Examples, we synthesize a
transformer program that is consistent with each example (line 8). Using this program, we extract

provenance information (line 9) on what fragments of the example outputs are dependant on what

fragments of the example inputs, and what sub-programs are used to transform the input fragments

to the output fragments. Then, we use anti-unification (line 10) to determine which fragments of

the example inputs are associated with which fragments of the additional positive inputs. Using the

provenance and anti-unification data, we can now compute a candidate output for each additional

positive input (line 12). Finally, we synthesize a transformer program from the original examples

and the new examples obtained by associating each additional positive input with its candidate

output. We explain these steps in detail below.

Provenance. The first step of transformer synthesis computes provenance information for each

example. The provenance information is computed for select operations. Given a transformer

program Ptrans, and an example i ↦→ o, the provenance information takes the form of SP0 ←
si0, . . . , SP𝑛 ← si𝑛 , where (a) each si𝑗 is a subtree of i, and (b) each SP𝑗 is a sub-program of Ptrans
that is a select, and SP𝑗 produces the output si𝑗 during the execution of Ptrans (si). We call the

subtrees si𝑗 the selected nodes of the input i. Note that each SP𝑗 may have multiple subtrees si𝑗
and si′𝑗 with 𝑗 ≠ 𝑗 ′ such that SP𝑗 ← si𝑗 and SP𝑗 ← si′𝑗 . One such case is due to the MapChildren
operator in Figure 3. The lambda function (produced by transformer) may have select programs

that operate over all children of a given node.

Example 4.1. Consider the Ptrans shown in Example 3.2 with the abbreviated example:

repository.ResolveDependency(dependency1, args . . .) ↦→
DependencyResolverUtility.ResolveDependency(repository, dependency1, args . . .)
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The provenance information is given by 𝜋 = { select1← ResolveDependency, select2←
repository, select3← args...}.

Anti-Unification. The next step in the algorithm is to compute an anti-unification of inputs and

additional positive inputs. Given two inputs i1 and i2, the anti-unification i1 ⊲⊳ i2 is given by a pair

(𝜏, ⟨𝜎1, 𝜎2⟩) where:
• template 𝜏 , is an AST with labelled holes {h0, . . . , h𝑛}, and
• two substitutions 𝜎1, 𝜎2 : {h0, . . . , h𝑛} → T such that 𝜎1 (𝜏) = i1 ∧ 𝜎2 (𝜏) = i2.

This definition can be generalized to more than two inputs. For arbitrary number of inputs, we use

the notation ⊲⊳{i1, . . . , i𝑛}. As is standard, we write anti-unification to mean the anti-unification

that produces the most specific generalization.

Example 4.2. Consider the inputs i1 = if(score < limit) and i2 = if(GetScore(run) <
limit). Then the anti-unification ⊲⊳{i1, i2} = if(h0 < limit), ⟨{h0 ↦→ score}, {h0 ↦→
GetScore(run)}⟩. It is more specific than any other generalization of i1 and i2, e.g., an anti-

unification with template if(h0 < h1).

We do not go into the details of the procedure for computing anti-unification but explain the

procedure briefly. The procedure is a variant of anti-unification modulo associativity-unity (AU).

First, we categorize all possible AST nodes into two different categories, based on the label:

• Fixed arity nodes: These are nodes that always have a fixed number of children. For example,

Identifier always has 0 children, CallExpression always has 2 children (function and argument

list), and PlusExpression always has 2 children.

• Variable arity nodes: These nodes can have different number of children. For example,

ParameterList, Block, and ClassDeclaration. One key observation is that in the AST domain,

the children of every variable arity node can be treated as a homogeneous list. That is, no

position in the list has a special meaning: every child in a parameter list is a parameter. In

contrast, the two children of CallExpression are functionally different.

Now, i1 ⊲⊳ i2 is computed as follows:

• If the roots of i1 and i2 have different labels or attributes: i1 ⊲⊳ i2 = (h, ({h ↦→ i1}, {h ↦→ i2})).
• If the root nodes of i1 and i2 have the same label label and attributes attrs, and if the nodes are
fixed-arity: then i1 ⊲⊳ i2 = Tree(label, attrs, 𝜏1 . . . 𝜏𝑛), ⟨

⋃
𝑖 𝜎

𝑖
1,
⋃

𝑖 𝜎
𝑖
2⟩ where (a) Children(i1) =

i11, . . . , i
𝑛
1 and Children(i2) = i12, . . . , i

𝑛
2 , and (b) for all 1 ≤ 𝑗 ≤ 𝑛.i𝑗1 ⊲⊳ i𝑗2 = (𝜏 𝑗 , (𝜎 𝑗

1, 𝜎
𝑗

2))
• If the root nodes of i1 and i2 have the same label label and are variable arity nodes: Let

the children of i1 and i2 be i11, . . . , i
𝑛
1 and i12, . . . , i

𝑚
2 , respectively. Then, we compute two

lists of node sequences s0, d0𝑖 , s
1 . . . d𝑘𝑖 , s

𝑘
for 𝑖 ∈ {1, 2} such that: (a) The concatenation

s0d0𝑖 s
1 . . . d𝑘𝑖 s

𝑘
is equal to i11, . . . , i

𝑛
1 and i12, . . . , i

𝑛
2 for 𝑖 = 1 and 𝑖 = 2, respectively. Note that

s𝑖 and d𝑏𝑖 are nodes that are shared and are different in the two lists, respectively. (b) the

combined length of s𝑗
𝑖
is maximized. Note that some d𝑗

𝑖
may be the empty list nil which

acts as the identity for the concatenation operation. Now, the anti-unification i1 ⊲⊳ i2 =

(Tree(label, attrs, s1h1 . . . s𝑘 ), ⟨{h𝑖 ↦→ d𝑖1 | 0 ≤ 𝑖 ≤ 𝑘}, {h𝑖 ↦→ d𝑖2 | 0 ≤ 𝑖 ≤ 𝑘}⟩).

Remark 4.3. The anti-unification of two ASTs i1 and i2 is not uniquely defined. For example, let

both i1 and i2 be argument lists with i1 = (x, x) and i2 = (x) where x is a variable. Now, i1 ⊲⊳ i2 is
computed as per the third case above. As per the definition, we have two options for the result:

(a) ((x, h), ⟨{h ↦→ x}, {h ↦→ nil}⟩, or (b) ((h, x), ⟨{h ↦→ x}, {h ↦→ nil}⟩. That is, it is unclear if the x
in i2 matches with the first or the second x in i1. This issue can be resolved by using more advanced

anti-unification techniques.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.



Feedback-Driven Semi-Supervised Synthesis of Program Transformations 219:13

Identifier

method
InvokeExpr

(ResolveDe
pendency)

AST of input 1

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency1) (Lowest)

Identifier

method
InvokeExpr

(ResolveDe
pendency)

AST of input 2

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency2) (Highest)

Identifier

method
InvokeExpr

(ResolveDe
pendency)

Generalization

Identifier

(repository)

Argument

……ℎ1 ℎ2

Fig. 5. The partial AST of two inputs shown in Figure 1a and 1c, and their anti-unification.

For our use case, we do not consider the general notion of anti-unification, but anti-unification
modulo provenance. Consider inputs i1 and i2, and provenance information 𝜋 derived from evaluation

a transformation Ptrans on i. The anti-unification modulo provenance i1 ⊲⊳𝜋 i2 is given by (𝜏, ⟨𝜎1, 𝜎2⟩)
where:

• (𝜏, ⟨𝜎1, 𝜎2⟩) is an anti-unification of i1 and i2, i.e., 𝜎1 (𝜏) = i1 and 𝜎2 (𝜏) = i2; and
• For each substitution (h ↦→ si) ∈ 𝜎1, either (a) si is a selected node, i.e., (SP ← si) ∈ 𝜋

for some SP; or (b) si has no ancestors or descendants that are selected nodes. Note that

this condition is only relevant for 𝜎1 as the provenance 𝜋 is derived from evaluating a

transformation on i.
The additional constraint on the substitutions makes anti-unification modulo provenance be unde-

fined in certain cases (see Example 4.4).

Example 4.4. Consider the input i1 = score < limit from the example score < limit ↦→
IsValid(score) and the additional input i2 = GetScore(run) < limit. Given i1 and i2, the anti-
unification procedure generates substitutions 𝜎1 = {h ↦→ score} and 𝜎2 = {h ↦→ GetScore(run)}
with the template h < limit. Given the input-output example and its corresponding transfor-

mation, the provenance procedure produces 𝜋 = {SP ← score} for some sub-program SP
that is a select operation. Note that score in 𝜎1 = {h ↦→ score} is a selected node in

𝜋 , and thus, the anti-unification modulo 𝜋 of i1 and i2 exists. Now, consider another input

i3 = score == GetScore(run). Given i1 and i3, the anti-unification procedure generates sub-

stitutions 𝜎 ′1 = {h ↦→ score < limit} and 𝜎 ′3 = {h ↦→ score == GetScore(run)} with the

template h. Here, the root node of i1 is LessThanExpression and of i3 is EqualsExpression:
hence, the expressions cannot be unified further. In this case, the condition for the anti-unification

modulo 𝜋 does not hold, as the substitution h ↦→ i1 returns the root node of i1 which is not a

selected node, but has a descendant that is a selected node. Thus, the anti-unification modulo 𝜋 of

i1 and i3 does not exist.
Intuitively, we are trying to match “important parts” (here, selected nodes) of i1 with equivalent

parts in i2 and i3. We can match the nodes score in i1 and GetScore(run) in i2 as they are

represented by the same hole in the anti-unification, and thus, they are compatible. Conversely, we

cannot match score in i1 and score in i3, because, even though they are equal, there is no hole in

the anti-unification of i1 and i3 that maps to them. Thus, they are incompatible.

Completing the Procedure. Given the above anti-unification modulo provenance computation,

we produce the potential outputs for all additional positive inputs PI. For producing these outputs,

we use an evaluation process that uses an input i from an example and an additional input pi. This
process is denoted as Evaluate∗ (Ptrans, pi, i). Let 𝜎 and 𝜎 ′ be the substitutions for i and pi in the

anti-unification modulo provenance, respectively. We evaluate Ptrans on pi as follows:
• For every sub-program SP of Ptrans which is a select, let SP← si ∈ 𝜋 . Then, the evaluation
value is set to 𝜎 ′(𝜎−1 (si)).
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• For every sub-program SP of Ptrans which is not a select, we evaluate the value by applying
the top level operator on the evaluated values of the children, as usual.

Example 4.5. Consider the first input in Figure 1a and 1c, anti-unification generates 𝜎1 =

{h1 ↦→ dependency, h2 ↦→ Lowest} and 𝜎2 = {h1 ↦→ dependency2, h2 ↦→ Highest}.
In order to produce an output for the additional positive input in 1c, we apply 𝜎2 (𝜎−11 (si))
to every SP ← si ∈ 𝜋 . The elements of interest in 𝜋 are: select1 ← dependency and

select2 ← Lowest for some select sub-programs select1 and select2. Now, we have

𝜎2 (𝜎−11 (dependency)) = dependency1 and 𝜎2 (𝜎−11 (Lowest)) = Highest. Using these values

as the evaluation results of select1 and select2 and continuing evaluation, we end up with the

output DependancyResolverUtility.ResolveDependency(dependency1, ..., Highest).

Once we have the outputs for the additional positive inputs, we provide the given examples along

with the new examples generated from additional positive inputs to the transformer synthesis

component of ReFazer.

Theorem 4.6 (Soundness). Algorithm 1 is sound: if a program P is returned, then (a) ∀i ↦→ o ∈
Examples.P(i) = o, (b) ∀pi ∈ PI.P(pi) ≠ ⊥, and (c) ∀ni ∈ NI.P(ni) = ⊥.

The proof follows from the use of ReFazertrans and ReFazerguard in lines 13 and 2, respectively.

Note that, it is possible that the inferred output po for the additional positive input pi is incorrect.
In this situation, the user can add a new input-output example (positive or negative) that has the

same input that was incorrectly classified. We will ignore the additional input i if there exists an
input from the input-output examples that is same as i.

Remark 4.7 (Completeness of Algorithm 1). Algorithm 1 is not complete, i.e., it may not return a

program even when one satisfying all requirements exists. This is an intentional choice. Consider

the case where Examples = {“(temp − 32) ∗ (5/9)” ↦→ “FtoC(temp)”}, PI = {“x = x + 1; ”}, and
NI = ∅. Here, the input of the example and the additional positive input are not logically related.

However, there exists a program that is correct, i.e., the program that returns the constant tree

“FtoC(temp)”. In any practical scenario, this constant program is very unlikely to be the intended

program. Hence, we explicitly make the choice of incompleteness.

4.2 Feedback-Driven Semi-Supervised Synthesis

Algorithm 2 presents a procedure for the feedback-driven semi-supervised synthesis problem

that closely follows Figure 4. It takes the following as input: (a) A feedback oracle Feedback that

represents the user and the environment. The feedback oracle takes as input a program P, a
set of examples Examples, an input pool InputPool, positive inputs PI, and negative inputs NI,
and produces a reward function Rew : InputPool → [−∞,∞]. Informally, the feedback oracle

checks the whole state of the process, and produces rewards for inputs from the pool. (b) A semi-

supervised synthesis procedure SynthesisEngine depicted in Algorithm 1. (c) An input pool, an

initial non-empty set of examples, a set of positive inputs, and a set of negative inputs.

In addition, the algorithm uses the thresholds 𝑝 and 𝑛 to determine if an input from the input pool

should be added to either the positive or negative inputs. These thresholds are dependant on the

application scenario and the Feedback oracle. In Section 5, we present three different application

scenarios and the choice of 𝑝 and 𝑛 for them. For the Feedback oracle, we present two different

oracles Feedbackuser and Feedbackauto. In the application scenarios, these oracles are combined in

different ways to obtain application specific feedback oracles.

User-Driven Feedback Oracle. The user-driven feedback oracle Feedbackuser represents the user

of the application. In different interfaces, the feedback from the user can take different forms, each
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Algorithm 2 Feedback-driven semi-supervised synthesis

Require: Feedback oracle Feedback : P × (T ̸→ T) × 2T × 2T × 2T → (T→ [−∞,∞]).
Require: Semi-supervised synthesis engine SynthesisEngine.
Require: Pool of available inputs InputPool.
Require: Initial examples Examples, positive inputs PI, and negative inputs NI.
Require: Thresholds 𝑝, 𝑛 ∈ R.
1: while true do

2: P← SynthesisEngine(Examples,PI,NI)
3: Notify user of current suggestions: {i ↦→ o | i ∈ InputPool ∧ o = P(i) ∧ o ≠ ⊥}
4: Rew← Feedback(P,Examples, InputPool,PI,NI)
5: PI′ ← {i ∈ InputPool | Rew(i) > 𝑝}
6: NI′ ← {i ∈ InputPool | Rew(i) < 𝑛}
7: if * then

8: PI← PI ∪ pi′ where pi′ is an arbitrary input from PI′

9: else

10: NI← NI ∪ ni′ where ni′ is an arbitrary input from NI′

of which can be converted to a reward function RewU : InputPool → [−∞, +∞]. We have the

following two cases (Section 5):

• The user explicitly provides new positive inputs PI′ and negative inputs NI′. We convert

this feedback into the reward function RewU by setting ∀pi ∈ PI′.RewU (pi) = +∞, ∀ni ∈
NI′.RewU (ni) = −∞, and RewU (i) = 0 for all other inputs in InputPool.
• The user provides a set of candidate positive inputsPI∗ with the intent that the transformation

should apply to one of these candidate positive inputs. For example, a set of candidate positive

inputs could be a set of ASTs that contain the cursor location in a file. We give a constant

reward to all the nodes in PI∗, i.e., we have ∀pi ∈ PI∗ .RewU (pi) = 𝐶 where 0 < 𝐶 < +∞. In
our implementation, we set 𝐶 as 2.

With richer user interfaces, we could consider more complex forms of Feedbackuser oracle.

Fully Automated Feedback Oracle. The fully automated feedback oracle Feedbackauto represents

the environment the synthesizer is operating in. It can include a number of independent compo-

nents only restricted by the available tools in the environment the synthesizer is running in. For

example, if a synthesizer is running inside an IDE, the oracle could use the compiler or the version

control history. Algorithm 3 presents a basic oracle that reuses the provenance and anti-unification

computation from the semi-supervised synthesis engine, and, uses the scoring function Score on
guards and a bound threshold𝑔 on scores. The scoring function and bound we use are the same as

in BluePencil [Miltner et al. 2019], which in turn takes the scoring function from [Rolim et al.

2017]. In practice, the feedback loop in Algorithm 2 can be optimized by sharing the provenance

computation and anti-unification across the synthesis engine and the Feedbackauto oracle.

Algorithm 3 works as follows. For each candidate (positive or negative) additional input i in the

input pool:

(a) If the program P on i produces an output and that output cannot be compiled, reward is −∞
(line 5). Though compilation can be expensive, in practice, IDEs allow for efficient incremental

compilation. Further, this step is not as expensive as 𝑃 typically does not produce an output, i.e.

Pguard (i) = false, for most i ∈ InputPool.
(b) Otherwise, we synthesize a guard that matches the examples and positive inputs along with

the candidate input i using ReFazerguard. Similar to BluePencil [Miltner et al. 2019], we bound
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Algorithm 3 The fully automated feedback oracle Feedbackuser

Require: Compiler Compiler : 𝑡 → B or ⊥ if compiler is not available

Require: Distance metric Distance : T × T→ R≥0
Require: Program P = (Pguard,Ptrans)
Require: Examples Examples : T × T
Require: Input pool InputPool
Require: Positive Examples PI, Negative Examples NI
Ensure: Rewards function RewE : InputPool ̸→ [−∞, +∞]
1: i∗ ↦→ o∗ ← arbitrary example in Examples
2: 𝜋 ← Provenance(i∗ ↦→ o∗,Ptrans)
3: RewE ← ∅
4: for all i ∈ InputPool do
5: if P(i) ≠ ⊥ ∧ Compiler ≠ ⊥ ∧ Compiler(P(i)) = false then
6: RewE ← RewE ∪ {i ↦→ −∞}
7: continue

8: guard← ReFazerguard ({i | i ↦→ o ∈ Examples} ∪ PI ∪ {i},NI)
9: if Score(guard) < threshold𝑔 then

10: RewE ← RewE ∪ {i ↦→ −∞}
11: continue

12: d← 1 −Distance(i, i∗)
13: RewE ← RewE ∪ {i ↦→ d}
14: return RewE

the score of the guard with a threshold to avoid overly general guards, which are almost never

the intended one (line 9).

(c) Otherwise, we compute the distance between the candidate input i and an example input i∗,
using a Distance function, i.e. RewE = 1 − Distance(i, i∗), where Distance(i, i∗) ∈ [0, 1] (line
12). The Distance function is explained in detail below.

The Distance Function. Consider an input i∗ that comes from an example i∗ ↦→ o∗, and a candidate
additional input i. Intuitively, we want to give a high reward if i is similar to i∗. However, we need a
more involved notion of similarity than standard clone detection techniques.

Example 4.8. Consider the example if(score < limit) ↦→ if(IsValid(score)) and the can-

didate additional input if(GetScore(run) < limit). A tree-based clone-detection technique

would not classify the above two inputs as clones given the high difference between score and

GetScore(run). However, as we described in Example 4.4, the anti-unification modulo 𝜋 of these

inputs tells us that (i) score is a relevant part of the input since it also appears in the output, and

(ii) score and GetScore(run) are compatible since there is a hole in the anti-unification that maps

to these nodes.

Given that we already have this information about the compatibility of these subtrees, we “relax”

the tree distance comparison between these two inputs. Rather than comparing the concrete

subtrees, we abstract them using a technique called 𝑑-caps [Evans et al. 2009; Nguyen et al. 2013].

For a 𝑑 ≥ 0, the 𝑑-cap of a node replaces all the sub-nodes at depth 𝑑 with holes. For instance,

when 𝑑 = 1, instead of comparing score and GetScore(run), we compare the nodes (with no

children) Identifier and CallExpression, which are their corresponding root nodes. Note that

expression score is shorthand for a node with label Identifier, attributes {TextValue ↦→ score}, and
no children. Both the subtrees have been truncated to a depth of 1. This “loosens” the comparison

between these nodes, and returns a smaller difference value.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.



Feedback-Driven Semi-Supervised Synthesis of Program Transformations 219:17

On the other hand, consider the candidate additional input if(score > UnrelatedFunction()).
Now, the difference between the two inputs is due to < limit and > SomeUnrelatedFunction().
These two fragments are not directly used in the output, and thus we cannot rely on the anti-

unification modulo 𝜋 to assess their compatibility. Hence, it is essential that we include this

particular difference in the computation of distance.

Concretely, our Distance function represents the 𝑑-cap replaced input as numerical vectors and

uses the Euclidean distance between these vectors to represent the distance between the trees,

similar to Deckard [Jiang et al. 2007], a clone detection technique. The distance between the two

inputs i1 and i2 can then be formally defined as follows:

Distance(i1, i2) = CloneDetection(𝜎†1 (𝜏), 𝜎
†
2 (𝜏)) where

(𝜏, ⟨𝜎1, 𝜎2⟩) = i1 ⊲⊳𝜋 i2

𝜎
†
1, 𝜎
†
2 = DCapModuloProvenance(𝜎1, 𝜎2, 𝜋)

Here, DCapModuloProvenance replaces each substitution for a selected subtree with its 𝑑-cap.
Formally, 𝜎

†
𝑖
(h) is equal to: (a) the 𝑑-cap of 𝜎𝑖 (h) if 𝜎𝑖 (h) is a selected node, and (b) 𝜎𝑖 (h) otherwise.

5 APPLICATIONS OF SEMI-SUPERVISED SYNTHESIS

In this section, we present three practical applications of semi-supervised synthesis in the domain of

C# program transformations. They allow different types of feedback to produce additional positive

inputs to the semi-supervised synthesizer. To implement the semi-supervised synthesis algorithm

(Algorithm 1), we leverage the Transformation.Tree API available in the PROSE SDK as a concrete

implementation of ReFazer. Additionally, in all applications, we use all the AST nodes available

in the source code file as inputs for the input pool. In our implementation, we use untyped ASTs,

i.e., each node in the AST does not have the type of the corresponding expression as an attribute.

While our techniques are able to handle typed ASTs, performing type inference on every edit can

incur performance penalties.

5.1 ReFazer
∗
: User-Provided Feedback about Additional Inputs

ReFazer
∗
uses the user-driven feedback oracle to identify positive inputs to the semi-supervised

synthesizer. The target for ReFazer
∗
is applications where a developer is providing examples

manually. To illustrate this application, consider our motivating example shown in Figure 1. For

the first false negative (Figure 1c), instead of manually performing the edit to give another example,

the developer can provide feedback to the system by indicating that the location (text selection

representing the input AST) should have been modified. ReFazer
∗
uses the feedback to create a

positive input and generalize the transformation. After that, ReFazer
∗
produces suggestions to

two out of the three false negatives. The developer can follow the same process to fix the other

false negative. In terms of the feedback oracles from the previous section, Feedbackuser returns a

reward function RewU that is +∞ on the additional positive input the developer has provided, and

0 everywhere else. Further, we pick the thresholds 𝑝 and 𝑛 to both have the value 0. Similarly, if

ReFazer
∗
produces a false positive on some location, developers could provide feedback to the

system by indicating that this location (text selection and press predefined shortcut) should not be

modified. With this feedback, Feedbackuser returns a reward −∞ on the additional negative input

provided by developers. Correspondingly, ReFazer
∗
will refine the synthesized transformation

with additional examples to avoid generating similar false positives.

ReFazer
∗
requires the developer to enter a special mode to provide examples and feedback

to the system. While this interaction gives more control to the developer, it may also prevent

developers from using it due to discoverability problems [Miltner et al. 2019]. Next, we describe
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two other modeless applications of our technique that do not require explicitly providing examples

and feedback.

5.2 BluePencil cur: Semi-automated Feedback Based on Cursor Position

For our second application, we instantiated the BluePencil algorithm [Miltner et al. 2019] using

our semi-supervised synthesizer as the PBE synthesizer. BluePencil works in the background of

an editor. While the developer edits the code, the system infers examples of repetitive edits from

the history of edits, and it uses a synthesizer to learn program transformations for these edits.

The original algorithm does not consider sets of input-output examples of size one, as they do not

indicate repetitive changes. We modified this constraint to allow the system to use BluePencil cur
to learn transformations from just one example and one additional positive input.

To enable the completely modeless interaction, BluePencil cur uses both user-driven and fully

automated oracles to produce feedback. The former leverages the cursor position to collect implicit

feedback from the developer. Note that the developer is not actively providing feedback—it is

completely transparent to the developer, and is inferred automatically. Intuitively, the cursor

suggests that the developer is interested in that part of the code and may want to edit it.

However, the cursor location is very ambiguous: the subtree the developer is likely to edit can

be any subtree that contains the cursor location. Consider the false negative shown in Figure 1c.

Suppose the developer places the cursor location at the beginning of the line. There are many

subtrees that include this location, including the ones corresponding to the following code fragments:

repository and repository.ResolveDependency(...). The latter is the input that should be

classified as a positive input. The Feedbackuser oracle returns a reward function that gives a positive

score (RewU) to all subtrees that include the position defined by the cursor. We also use feedback

from the Feedbackauto oracle described in Section 4.2 to further disambiguate the cursor location.

Intuitively, Feedbackauto will provide positive rewards (RewE) to the nodes that are “similar” to

the example inputs. Finally, we regard inputs with RewU (𝑖) ∗ RewE (𝑖) > 𝑝 as positive inputs and

inputs with RewU (𝑖) ∗ RewE (𝑖) < 𝑛 as negative inputs.

We implement BluePencil cur as a Visual Studio extension. Figure 2 shows the extension in

action. As soon as the developer places the cursor in the location related to the false negative,

BluePencil cur uses the semi-supervised feedback synthesis to improve the transformation. The

new transformation produces an auto-completion suggestion for the current location (see Figure 2).

In this setting, we are using the user-driven feedback and the automated feedback to more precisely

pick the additional positive input. However, there are many settings where it is infeasible to obtain

any feedback from the user. We discuss this case in the next section.

5.3 BluePencil auto: Fully Automated Feedback Based on all Inputs in the Source Code

Our last application (BluePencil auto) uses fully automated feedback to identify positive inputs

without any explicit or implicit feedback from developers. The motivation for this application is

that the developers may not be aware of all locations that must be changed or they may want to

apply the edits in bulk. We also implemented BluePencil auto on top of BluePencil. We restricted

this application to synthesis tasks that have at least two input-output examples.

Consider again our motivating example (Figure 1). As soon as the developer finishes the first

two edits (Figure 1a), BluePencil auto automatically identifies the inputs in Figure 1c as positive

inputs and synthesizes the correct transformation. Now, if the developer is unaware of the other

locations, the tool still produces suggestions at these places. These suggestions may then be used to

automatically prompt the developer to make these additional edits. Another scenario is as follows:

after the two edits, the developer creates a pull request. The tool can now be run as an automated

reviewer (see, for example, [Bader et al. 2019]) to suggest changes to the pull request.
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6 EVALUATION

In this section, we present our evaluation of the proposed approach in terms of effectiveness and

efficiency. In particular, we evaluate our technique with respect to the following research questions:

(RQ1) What is the effectiveness of ReFazer
∗
in generating correct code transformations?

We hypothesize that user-provided positive inputs should help our synthesis engine learn

better transformations. We evaluate the quality of the synthesized transformation with and

without additional positive inputs by measuring the number of false positives (incorrect

suggestions) and false negatives (missing suggestions) produced.

(RQ2) What is the effectiveness of the reward calculation function? The reward calculation

function needs to precisely identify valid additional inputs to avoid generating many false

positives or false negatives. We evaluate our reward calculation function by comparing it

with two baseline approaches: no validation and clone detection.
(RQ3) Given a cursor location, what is the effectiveness and efficiency of BluePencil cur?

BluePencil cur should generate edit suggestions at the cursor location efficiently enough

to be usable as an auto-completion feature in an IDE, while still maintaining the quality of

suggestions. Given cursor locations, we measure the number of false positives and negatives

produced by BluePencil cur, and the time taken to produce the suggestions.

(RQ4) How do BluePencil cur and BluePencil auto compare to BluePencil?

BluePencil cur and BluePencil auto are both built on top of BluePencil, and they aim at

reducing the number of examples developers need to provide. By simulating a developer

performing repetitive edits using these tools, we compare how much information (examples

and locations) is required by each one of them.

6.1 Benchmark Suite

We collected 86 occurrences of real life code editing sessions containing repetitive edits. These

scenarios were collected from developers at Microsoft spanning multiple teams during the internal

testing phase of the Microsoft Visual Studio IntelliCode suggestions feature (BluePencil).

Each session consists of a list of program versions representing the history of the program

content as the user makes edits. For each session, we manually generated the ground truth data

containing the number of repetitive edits, the version ids before and after each repetitive edit, and the

locations and content change for each repetitive edit. Each editing session contains one or multiple

sequences of repetitive edit transformations, with each sequence containing at least two repetitive

edits. Each session also contained noise, i.e., edits that are not a part of any repetitive sequence.

Figure 6 shows the number of repetitive edits in different program editing sessions, where the

𝑥-axis presents the number of repetitive edits and 𝑦-axis gives the number of editing sessions. For

instance, there are 25 (around 30%) editing sessions with 2 repetitive edits. This high percentage

also motivates the need for a technique that automates edits with fewer examples, ideally 1 example.

Techniques such as BluePencil that require at least two examples cannot generate any suggestions

for cases with just 2 repetitive edits in the session. The average number of repetitive edits is 4.07

while the largest number is 16. The benchmark suite contains a variety of edits, from small edits

that change only a single program statement to large edits that modify code blocks.

All the experiments were conducted on a machine equipped with Inter Core i7-8700T CPU @

2.4GHz, 32GB memory running 64-bit Windows 10 Enterprise.

6.2 Effectiveness of ReFazer
∗

In the scenario where a developer manually indicates an additional positive input for a repetitive

transformation, we evaluate the effectiveness of ReFazer
∗
by measuring its precision and recall
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Fig. 6. The distribution of number of repetitive edits across the programs

Table 1. The effectiveness of semi-supervised synthesis.

Examples (N) Session Edit Scenario

ReFazer ReFazer
∗

Precision Recall Precision Recall

One 86 350 1400 100.00% 26.71% 96.01% 100.00%

Two 61 300 3664 99.65% 77.26% 98.58% 99.94%

Three 40 237 7578 99.88% 89.10% 99.72% 99.99%

in generating correct suggestions. In this evaluation, we use ReFazer [Rolim et al. 2017] as our

baseline.

Experimental Setup. In each program editing session, we first manually extract all the repetitive

edits. For a session with𝑀 repetitive edits, we provide 𝑁 edits as examples for the synthesis engine,

and the remaining repetitive edits in this session are used for testing. We set 𝑁 < 𝑀 to ensure there

is at least one edit that can be used for testing, further, we limit 𝑁 up to three. Considering that

users could perform the repetitive edits in any order, we consider all combinations when choosing

the examples. For instance, for a session with three repetitive edits (𝑒1, 𝑒2, 𝑒3), the users could

manually complete 𝑒1 and ReFazer
∗
automates 𝑒2 and 𝑒3. The user could also complete 𝑒3, and

ReFazer
∗
automates 𝑒1 and 𝑒2. Different edits contain slightly different information: the result of

the synthesizer depends not only on the number of examples but also on which examples were used.

We try all combinations of 𝑁 examples to avoid any bias introduced by picking a particular order.

For an editing session with𝑀 repetitive edits, there are 𝐶 (𝑀, 𝑁 ) combinations when choosing the

𝑁 examples. For instance, for a program edit session with four repetitive edits, if two edits are

provided to the PBE engine as examples, there are 𝐶 (4, 2) = 6 combinations. Given a combination

of 𝑁 examples to the PBE engine, we then create a set of testing scenarios where the 𝑁 edits are

provided to PBE engine as examples, and one of the𝑀 −𝑁 other edits is used for testing. Therefore,

for an editing session with𝑀 repetitive edits, we create 𝐶 (𝑀, 𝑁 ) ∗ (𝑀 − 𝑁 ) scenarios. In each test,

ReFazer
∗
also takes the input from testing edit as additional positive input. We then compare the

output of the synthesized transformation on the test input against the test output. We calculate the

precision and recall of ReFazer and ReFazer
∗
by measuring the number of false positives, false

negatives, and true positives produced in all the scenarios.

Experimental Parameters. In this experiment, we set RewU (pi) = +∞ for the user-provided

positive input pi ∈ PI and RewU (ni) = −∞ for the user-provided negative input ni ∈ NI. Further,
we set both 𝑝 and 𝑛 in Algorithm 2 as 0.

Evaluation Results. Table 1 presents our evaluation results of traditional ReFazer and ReFazer
∗
.

The first column displays the number of examples provided to PBE engine, while the Session column

shows the number of program editing sessions. Edit and Scenario columns display the number of

edits and scenarios, respectively. The more examples the PBE engine takes, the more scenarios we
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create because there are more combinations when choosing examples. By comparing the different

number of examples, ReFazer produces much better results (recall) with more examples (from

26.71% with one example to 89.10% with three examples). This is because the synthesis engine

can learn how to generalize the transformation with more examples. The precision is always high

because ReFazer always learns the most specific transformation which is unlikely to produce

false positives. However, too specific transformations easily result in false negatives. Especially,

the recall with one example is just 26.71%, which highlights the challenges of synthesizing a

high-quality transformation with fewer examples. In contrast, ReFazer
∗
significantly improves the

recall regardless of the number of examples, while maintaining the high precision (slightly lower).

ReFazer
∗
can generate better results because the additional input helps synthesize a more suitably

generalized transformation. Specifically, we achieve 100% recall and >96% precision with only one

example, which can release the burden of users from providing multiple repetitive edit examples.

Compared to ReFazer, we generate a few more false positives. The nature of these additional false

positives is discussed in Section 6.6.

ReFazer
∗
significantly improves the recall of ReFazer while retaining the high precision

in generating correct suggestions. Even by taking one example as input, ReFazer
∗
achieves

more than 96% precision and 100% recall.

6.3 Effectiveness of Reward Calculation Function

Our second experiment evaluates the effectiveness of the proposed reward calculation function.

The reward calculation function determines whether a node is an additional positive or negative

input for the feedback system. In this section, we evaluate its effectiveness in identifying additional

positive inputs by comparing with two baseline approaches: No validation and clone detection.
• No validation: This baseline regards any node as an additional positive input. Hence, we set

Rew(i) = +∞ for all nodes in the input pool.

• Clone detection: Given an edit i∗ ↦→ 𝑜∗ and one additional node i, we determine whether

i is an positive additional input by calculating the normalized distance between i∗ and i
using clone detection techniques, i.e. Rew(i) = 1 − CloneDetection(i, i∗). Here, we use the
approach proposed by Jiang et al. [2007] without the use of the 𝑑-cap modulo provenance

from Section 4.2.

• Reward function based on Distance: Given edit i∗ ↦→ 𝑜∗ and additional node i, we use our
proposed approach in Algorithm 3 and Section 4.2 to calculate the reward score for i.

Experimental Setup. In each program editing session, we select the first edit as the example

i∗ ↦→ 𝑜∗ for the PBE engine. We then create a set of additional inputs to test whether the techniques

above can correctly classify each input i in this set as positive or negative. To create this set, we

select the inputs of the remaining edits as positive inputs pNodes and all the remaining subtrees

from the document that should not be transformed by the synthesized transformation as negative

inputs nNodes. We measure the false positives and negatives produced on both pNodes and nNodes
by the different approaches.

Experimental Parameters. In this experiment, we set 𝑝 and 𝑛 in Algorithm 2 as 0.7 and 0.1,

respectively. Specifically, we regard input i as a positive input if Rew(i) > 0.7 and a negative input

if Rew(i) < 0.1. Further, we set 𝑑 = 2 for d-cap replacement (section 4.2).

Evaluation Results. Table 2 shows the evaluation results. By regarding any node as an additional

positive input, the synthesis engine can successfully generate suggestions for many of them. How-

ever, it also generates a large number of false positives (9055), which demonstrates the importance
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Table 2. The effectiveness of the reward calculation function.

Sessions # pNodes # nNodes
No validation Clone detection Reward function

# false # false # false # false # false # false

positive negative positive negative positive negative

86 265 243417 9055 7 8 111 11 14

Table 3. The effectiveness of BluePencilcur when given the history edit trace and the cursor location.

Scenarios Suggestion False Positive False Negative Precision Recall Time (ms)

295 291 1 3 99.66% 98.98% 51.83 (avg)

of the additional input validation. If we validate the additional input using existing clone detection

(Column Clone detection), the false positive rate is significantly reduced. However, it introduces

more false negatives because the clone detection is too strict when comparing two inputs as shown

in Section 4.2. Considering the fact that we fail to generate suggestions on more than 40% (111 out

of 265) of pNodes, the clone detection technique is also not acceptable. The last two columns show

the evaluation result of our reward calculation function. We also significantly reduce the number of

false positives and we do not introduce too many false negatives. Our reward calculation function

results in 3 more false positives than clone detection. The underlying reason will be analyzed in

the discussion section.

The proposed additional input validation can help reduce false positives. Further, it also

generates fewer false negatives than existing clone detection techniques.

6.4 The Effectiveness and Efficiency of BluePencil cur

To evaluate the effectiveness and efficiency of BluePencil cur, we measure the false positive and

false negatives produced at the cursor location by simulating the program editing process of

developers.

Experimental Setup. Recall that all the program versions are recorded in form of {𝑣1, 𝑣2, 𝑣3 ... 𝑣𝑖 ...

𝑣𝑛} on each program editing session. We could easily reproduce the editing steps by going through

all the history versions one by one. From the second edit in each editing session (users need to

manually complete the first edit), we feed the history versions before edit 𝑒𝑖 and the edit location

of 𝑒𝑖 to BluePencil cur. The history versions include at least one repetitive edit (e.g. 𝑒1) and some

irrelevant edits (noise). We randomly select a location from the range of edit location to simulate

the cursor location (user might invoke synthesis at any location within the range of edit). We use

the same experimental parameters as Section 6.3.

Evaluation Results. Table 3 shows our evaluation result. Scenarios presents the number of sce-

narios. In each scenario, one set of history versions and one cursor location are provided to the

engine. Our evaluation results show that our engine only generates one false positive and three

false negatives on all the scenarios. In other words, we achieve 99.66% precision and 98.98% recall.

Meanwhile, BluePencil cur should be fast enough to ensure that the suggestion can be generated

at run-time. Therefore, we also evaluate the efficiency of BluePencil cur by measuring the time

to generate each suggestion. Time describes the averaged time to generate edit suggestions. Our

engine produces one suggestion in 51.8ms on average, and up to 441ms. At the cursor location, we

believe generating suggestions in less than 0.44 seconds is acceptable.
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Given one set of history versions and one cursor location, BluePencil cur achieves around

99% precision and recall in generating correct suggestions. Meanwhile, it just takes 51.8

milliseconds on average to generate one suggestion.

6.5 A Comparison to BluePencil

In this section, we present an experiment that simulates a developer performing repetitive edits in

two different settings.

• Setting 1: The developer uses BluePencil to complete the task.

• Setting 2: BluePencil cur and BluePencil auto, which are built on top of BluePencil, are

enabled and they assist the developer to complete the task.

The goal of this experiment is to compare the amount of information, in the form of examples and

locations, that a developer must provide to complete a task when supported by these tools.

Experimental Setup. To simulate Setting 1, given an edit session that contains edits {𝑒1, 𝑒2, ...,

𝑒𝑛}, we iteratively add each edit 𝑒𝑖 as an example to BluePencil. At each iteration, we check the

suggestions produced by BluePencil. If it produces a suggestion to automate an edit 𝑒 𝑗 , such

that 𝑗 > 𝑖 , we remove this edit from the set of available edits. At the end of the simulation, we

have the total number of examples #examples provided by the developer and the number of edits

#suggestions that were automated by BluePencil. For instance, consider the scenario showed in

Figure 1, where the developer performed seven repetitive edits. After providing 𝑒1 and 𝑒2 (Figure 1a)

as examples to BluePencil, it produces the suggestions to automate 𝑒3 and 𝑒4 (Figure 1b). The

three edits left are the ones that were applied to the locations shown in Figure 1c. We provide 𝑒5
and it produces a suggestion to 𝑒6. Finally, we provide 𝑒7, the last edit. In total, we simulated the

developer providing 4 examples (i.e., #examples = 4) and the BluePencil automating 3 edits (i.e.,

#suggestions).
Setting 2 is similar to Setting 1 but instead of simulating the developer interaction just with

BluePencil, we add BluePencil cur and BluePencil auto. Now, at each iteration after the first,

before providing 𝑒𝑖 , we first provide an arbitrary cursor location within the location of 𝑒𝑖 . Only if

BluePencil cur cannot produce the suggestion to automate 𝑒𝑖 , we provide the full example. This

process simulates a developer first navigating to the location of 𝑒𝑖 and then performing the edit.

If BluePencil cur is able to produce a suggestion for 𝑒𝑖 as soon as the developer navigates to the

location of 𝑒𝑖 , it is counted towards the number of locations#locs. Otherwise, the developer has to
manually perform this edit, and 𝑒𝑖 is counted towards the number of examples #examples.
Further, we also enable BluePencil auto to automatically find additional inputs. For instance,

back to our running scenario, after providing the first edit in Figure 1a as an example, we provide a

cursor location within the second edit. Using this example and location, BluePencil cur produces

suggestions for 𝑒2, 𝑒3, and 𝑒4. Additionally, BluePencil auto produces suggestions for 𝑒5, 𝑒6, and 𝑒7.

Note that BluePencil auto requires at least two examples (see Section 5), and thus will not produce

any suggestions until the user provides at least one edit and one cursor location. In this simulation,

the developer provided one example (i.e., #examples = 1) and one cursor location (i.e., #locs = 1
and the system automated 6 edits (#suggestions = 6). Further, since 3 edits (𝑒5, 𝑒6, and 𝑒7) were
automated using BluePencil auto, we say that these locations are automatically inferred and write

#inferredLocs = 3. We use the same experimental parameters as Section 6.3.

Evaluation Results. Table 4 shows the results of our simulation. In Setting 1, BluePencil required

191 examples and produced suggestions for 159 out of 350 edits i.e., the synthesis engine assisted
the developer to automate 45% of the edits. Meanwhile, in Setting 2, the synthesis engine automated
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Table 4. Summary of the comparison to BluePencil. Column #inferredLocs is the number of additional

inputs that are automatically identified by the feedback system. Column%automated shows the percentage

of edits automated by the synthesis engine.

Approach Edit #examples #locs #inferredLocs #suggestions %automated Time(s)

Setting 1 350 191 - - 159 45% 0.25

Setting 2 350 87 87 37 263 75% 0.32

263 edits, which represents 75% of the total number of edits. It required only 87 examples and 87

cursor locations. Additionally, BluePencil auto found 37 additional inputs, decreasing the number

of cursor locations the developer has to provide.

While Setting 2 (BluePencil cur and BluePencil auto) is more effective at producing suggestions,

the tool should also be fast enough to ensure that the suggestions can be generated at run-time when

developers are programming. Therefore, we also evaluated its efficiency by measuring the time to

generate edit suggestions. Column Time displays the averaged time to generate edit suggestions.

Our engine produced suggestions in 0.32 seconds on average, fast enough to be used as an on-the-fly

synthesizer in an IDE. Compared to BluePencil, it was slightly slower as it continuously refines

the transformation by invoking the synthesis engine multiple times.

In Setting 2 (BluePencil cur and BluePencil auto), the synthesis engine automated 75% of

the edits, compared to 45% edits automated in Setting 1 (BluePencil). On average, our

engine took 0.32 seconds to produce suggestions.

6.6 Discussion

In the above experiments, our technique produced a small number of false positives and false

negatives. Besides false positives and negatives related to the limitations of Refazer itself, we found

false positives related to semi-supervised synthesis and the automated feedback oracles. We also

observed false positives related to the limitations of our anti-unification algorithm.

The semi-supervised synthesis technique produces a false positive in the following case. Given

the edit: Model(. . . , outputs: null, inputs: null) ↦→ Model(. . . , outputs: null),
i.e., removing inputs: null, and the additional positive input: Model(. . . , inputs: new
List<ModelInput>(), outputs: null), semi-supervised synthesis generates a transformation

that deletes the last argument. (Note that the order of the last two parameters has been reversed.)

Therefore, the synthesized transformation will produce the suggestion for the additional input by

deleting the last argument outputs: null. However, the desired edit is deleting the inputs : ∗
clause, which is the second last argument in the additional input. That is, the correct suggestion

should be to remove the second-to-last argument.

One way to address this issue would be to extend the anti-unification algorithm to handle commu-

tativity as the order of “name: value” style arguments is irrelevant. However, this would complicate

our anti-unification problem, with having to handle standard arguments under the AU (associativity

and unity) theory and the named arguments under the ACU (associativity, commutativity, and

unity) theory.

Limitations of the Feedback Oracles. In our experiment, BluePencil cur and BluePencil auto
produced false positives and negatives due to limitations in the feedback oracles. It might classify

negative inputs as positive ones if the locations are too similar. For instance, developers made the fol-

lowing edit: comparedEdge.Item2 >= Source.Index ↦→ comparedEdge.Item2 > Source.Index.
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The developer’s intention was to change >= to > only if the left side of the comparison expression

was comparedEdge.Item2. The oracle classified comparedEdge.Item1 >= Source.Index as a

positive addition since the input is very similar. As future work, we plan to allow users to provide

feedback about false positives, so that the system can create negative inputs. On the other hand,

the false negatives mainly happened on small inputs where the change was on the root of the AST.

In this case, any generalization of the input looked like an over generalization for the feedback

oracle, since there was not much context for transformation.

Threats to Validity. Our benchmark suite may not be representative of the different types of edits

developers perform. To reduce this threat, we collected real-world scenarios from developers who

are working on different large code-bases to have as much variety as possible in the benchmark

suite. Another threat is that developers may perform irrelevant, non-repetitive edits in addition

to the repetitive ones, which may affect the effectiveness of our technique. To alleviate this issue,

we also collected the traces of irrelevant edits and used them in our benchmarks. Finally, in some

scenarios of repetitive edits, it is difficult even for humans to discern the transformation intended by

the developer, which may affect the construction of our benchmark. To reduce this threat, multiple

authors of the paper reviewed these ambiguous scenarios. Wherever possible, we contacted the

developer who made the edit for confirmation.

7 RELATEDWORK

Program Synthesis. Program synthesis, while being an old field of study [Buchi and Landweber

1969; Manna and Waldinger 1980; Pnueli and Rosner 1989], has recently been successfully used

in many domains including data manipulation and wrangling [Gulwani 2011; Singh 2016; Yagh-

mazadeh et al. 2018], data structure manipulation and design [Feser et al. 2015; Frankle et al. 2016;

Singh and Solar-Lezama 2011], concurrent programming [Cerný et al. 2011, 2013; Solar-Lezama

et al. 2008; Vechev et al. 2010], and distributed controller design [Alur et al. 2014; Udupa et al. 2013].

The counter-example guided inductive synthesis procedure, that turns any synthesis task into

repeated solving of programming-by-example tasks is the basis of the state-of-the-art synthesis

technique Sketch [Solar-Lezama et al. 2005; Solar-Lezama et al. 2006; Solar-Lezama et al. 2006, 2007].

The syntax guided synthesis (SyGuS) framework [Alur et al. 2013] attempts to unify synthesis

tasks from different domains by providing a mechanism to specify both the syntax and semantics

of the desired solution. Efficient general purpose SyGuS solvers have been built and have found

success in various domains [Alur et al. 2015, 2017; Huang et al. 2020; Reynolds et al. 2015; Udupa

et al. 2013]. However, general purpose synthesizers are often less efficient than domain-specific

ones as they are not able to leverage domain specific algorithms and techniques. Further, in most

program synthesis techniques, the specification needs to be well-defined and provided explicitly. In

our setting, no explicit specification is available: our technique automatically determines which

subset of edits from a history of edits should be the example specification for the synthesis task.

This ability to automatically determine which examples to use allows for the modeless operation of

our technique and its predecessor BluePencil.

Interactive Program Synthesis. Interactive program synthesis systems allow users to incremen-

tally refine the specification in response to synthesizer outputs [An et al. 2019; Le et al. 2017].

Within this paradigm, a notable approach for proposing refinements is based on the concept of

distinguishing inputs [Jha et al. 2010], in which inputs are discovered for which the outputs of

multiple consistent programs disagree, suggesting the need for additional refinement to rule out

undesired candidate programs. FlashProg [Mayer et al. 2015] employs this notion of distinguishing

inputs to pose parsimonious sequences of questions to the user to resolve ambiguities with respect

to the user’s specification. A disadvantage of this approach, however, is the overhead required

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.



219:26 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

for users to answer potentially many rounds of clarifying questions to refine intent. In this paper,

we propose a complementary technique: we can synthesize new programs using semi-supervised

synthesis. Our approach has the advantage that it allows users to refine intent with little to no

modification to their workflow. Additionally, the technique not only leverages user feedback but

also allows fully automated feedback during specification refinement.

Semi-Supervised Learning. Semi-supervised machine learning techniques [Zhu and Goldberg

2009] combine labeled data (i.e., input-output examples) with unlabeled data (i.e., additional inputs)

during training to exploit a large amount of unlabeled data available in many domains, such as

websites, source code, and images [Zhu 2005]. Beyond classical machine learning settings, semi-

supervised learning techniques have also been adapted for use in program synthesis. For example,

the BlinkFill system [Singh 2016] for synthesizing spreadsheet string transformations exploits input

data by extracting a graphical constraint system to efficiently encode the logical structure across all

available inputs. This input structure allows BlinkFill to achieve dramatic reduction in the number

of candidate programs, leading to improvement in performance and reduction in the number of

input-output examples over previous systems [Gulwani 2011]. Unfortunately, direct application

of this approach to the domain of program transformations is impractical due to different types

of inputs (positive inputs and negative inputs), the large number of inputs (all AST nodes in the

source code) and the size of the ASTs themselves (potentially many thousands of tokens per file).

To mitigate these issues, we have proposed a novel technique based on reward functions to isolate

only those additional inputs that are likely to provide fruitful disambiguation, while still preserving

the runtime efficiency required for interactive use in an IDE setting.

Software Refactoring Tools. Software refactorings are structured changes to existing software

that improve code quality while preserving program semantics [Mens and Tourwe 2004; Opdyke

1992]. Popular IDEs such as Visual Studio [Microsoft 2019], Eclipse [Eclipse Foundation 2020], and

IntelliJ [JetBrains 2020a] provide built-in support for various forms of well-understood software

refactorings. However, experience shows that these refactoring tools are often underutilized by

developers [Vakilian et al. 2012]. Impediments to adoption include the tedium associated with

applying refactorings, and lack of awareness that a desired refactoring exists (the discoverability

problem). Additionally, recent studies [Kim et al. 2012] indicate that developers often relax the re-

quirement on semantics-preservation in practice, suggesting the need for tools for ad-hoc repetitive

code transformation [Steimann and von Pilgrim 2012], not just well-known refactorings.

Several program synthesis-based approaches have been studied toward user-friendly refactoring

and code transformation support, such as the Sydit, Lase, and ReFazer systems [Meng et al. 2011,

2013; Rolim et al. 2017] for synthesis of code transformations from examples. Getafix [Bader et al.

2019] and Revisar [Rolim et al. 2018] apply code mining techniques to discover such changes offline

from large codebases, thus expanding breadth while also mitigating the burden for users to specify

examples explicitly. BluePencil [Miltner et al. 2019] takes an alternative approach to increase

discoverability and user-friendliness: the system uses a modeless, on-the-fly interaction model in

which the programmer is presented with suggested edits without ever exiting the boundaries of

the IDE’s text editor–the system watches the user’s behavior and analyzes code change patterns to

discover ad-hoc repetitive edits.

The semi-supervised feedback learning approach in this paper is complementary and compatible

with the techniques employed by BluePencil: the modeless interaction of BluePencil provides

easy discoverability, and additional inputs provide a natural and effective mechanism for refinement

when a false negative or positive is discovered.

Code Suggestions. Related to refactoring by example are techniques for suggesting code comple-

tions. [Raychev et al. 2014] train statistical language models to predict API usage patterns from
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code snippets extracted from websites such as Github and StackOverflow. These models are capable

of filling partial programs with holes corresponding to missing method names or parameters. The

Bing Developer Assistant [Zhang et al. 2016] also employs statistical models for code snippets, but

for the purpose of answering natural language code search queries. MatchMaker [Yessenov et al.

2011] analyzes dynamic executions, rather than source code, of real-world programs for API usage

patterns. The aforementioned approaches all require training over large datasets, whereas our

approach provides suggestions from few examples and additional inputs. In contrast to statistical

techniques, type-based code completion approaches exploit type information to complete partial

expressions [Gvero et al. 2013; Perelman et al. 2012]. Because these techniques require rich type

information, they may be difficult or impractical to apply toward dynamically-typed languages.

Our approach avoids this difficulty by requiring only syntax trees.

8 CONCLUSION AND FUTUREWORK

Developer tools that proactively predict users’ actions and help them improve their productivity

are gaining popularity. In this context, we presented a novel approach for predicting repeated edits

that exploits the latent information in the user’s code. By combining knowledge about what edits

the user has performed in the past with the observable patterns in rest of the code, our technique is

able to significantly improve precision and recall metrics for predicting future repeated edits. It is

intriguing to think about the potential of harnessing other forms of hidden information in user’s

code and actions to ease the task of producing bug-free code revisions.

We are integrating the proposed techniques in Visual Studio IntelliCode suggestions. A screen

capture of the current prototype is presented in Figure 2. After the integration, we plan to conduct

user studies to evaluate the usability of the system. Additionally, we plan to develop different user

interface designs to allow developers to provide additional inputs in different ways. Another line

of work we are excited to explore is the use of large scale edit history data to produce suggestions

not only for a sequence of repetitive edits, but any sequence of edits predictable from past data.

We also plan to explore the use of our technique in other programming-by-example domains such

as text manipulation and relational data wrangling. Another exciting future direction is to use

BluePencil auto to produce an interactive code review assistant. In summary, we believe that the

techniques presented in this paper can enable many code editing and reviewing tools for many

application scenarios with varying levels of user interaction.
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