
Presented virtually at OOPLSA 2020

Just-in-time Learning for Bottom-
Up Enumerative Synthesis

Shraddha Barke
Hila Peleg
Nadia Polikarpova

1

 Program Synthesis

2

Program SpaceSpecification

Program

Synthesizer

Syntax-Guided Program Synthesis (SyGuS)

3

Input-output
examples

(or first-order formula)

Specification

Context-free Grammar
Program Space

Synthesizer

Program

SyGuS Example (remove-angles)

4

Goal : remove angle brackets < and > from the input string x

SyGuS Example (remove-angles)

5

Goal : remove angle brackets < and > from the input string x

"<a>"

Input-output examples

"<a> "

"a"

"a b"

"<a> <c>" "a b c"

Synthesizer

SyGuS Example (remove-angles)

6

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

Synthesizer

SyGuS Example (remove-angles)

7

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Synthesizer

SyGuS Example (remove-angles)

8

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Synthesizer

SyGuS Example (remove-angles)

9

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

9

Synthesizer

SyGuS Example (remove-angles)

10

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

10

Synthesizer

SyGuS Example (remove-angles)

11

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

Goal : remove angle brackets < and > from the input string x

Context-free Grammar

S x | ' ' | '<' | '>'

++ S S (string concatenation)

rep S S S (rep x y z replaces first x in y by z)

11

Synthesizer

Traditional Program Synthesis
Search strategy: explore programs in order of size

Program SpaceSpecification

Program

Synthesizer

Traditional Program Synthesis

Program SpaceSpecification

Program

>30 million programs

Search strategy: explore programs in order of size

Synthesizer

Traditional Program Synthesis

Program SpaceSpecification

Program

>30 million programs

Timeout after 20 minutes

Search strategy: explore programs in order of size

Guided Program Synthesis

15

1Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating
search-based program synthesis using learned probabilistic models. PLDI 2018

Search strategy: explore programs in order of cost1

Program SpaceSpecification

Program

Guided Synthesizer

Guided Program Synthesis

16

1Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating
search-based program synthesis using learned probabilistic models. PLDI 2018

Search strategy: explore programs in order of cost1

Program SpaceSpecification

Program

Guided Synthesizer

17

Guided Program Synthesis
Search strategy: explore programs in order of cost

Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Guided Synthesizer Context-free Grammar

rep S S S
++ S S

S x | ' ' | '<' | '>'

18

Guided Program Synthesis
Search strategy: explore programs in order of cost

Guided Synthesizer PCFG
$2

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

19

Guided Program Synthesis
Search strategy: explore programs in order of cost

Guided Synthesizer PCFG
$2

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

20

Guided Program Synthesis
Search strategy: explore programs in order of cost

Guided Synthesizer PCFG
$2

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

130K programs

Guided Program Synthesis: Challenges

1. How to learn useful costs?

2. How to guide search given costs?

21

Search strategy: explore programs in order of cost

22

Guided Program Synthesis: Challenges
1. How to learn useful costs?

2. How to guide search given costs?

23

Guided Program Synthesis: Challenges

Prior Work Our Technique

1. How to learn useful costs?

2. How to guide search given costs?

1. Data-driven learning 1. Just-in-time learning from partial solutions

24

Guided Program Synthesis: Challenges

Prior Work

1. How to learn useful costs?

2. How to guide search given costs?

1. Data-driven learning

2. Guided Top-down search 2. Guided Bottom-up search

Our Technique

1. Just-in-time learning from partial solutions

PROBE Overview

25

 i/o examples
+ CFG

Synthesis

PROBE

SyGus Problem

PROBE Overview

26

 i/o examples
+ CFG

Synthesis Solution found? Solution!

PROBE

SyGus Problem

PROBE Overview

27

 i/o examples
+ CFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

PROBE Overview

28

 i/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

29

PROBE finds solution in 5 seconds!

Goal : remove angle brackets < and > from the input string x

SyGuS Example (remove-angles)

Guided Synthesizer PCFG
$2

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> " "a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Talk Outline

30

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Talk Outline

31

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Talk Outline

32

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Talk Outline

33

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Talk Outline

34

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Our Solution: Just-in-Time Learning

35

Idea: partial solutions are similar in structure to the solution

Our Solution: Just-in-Time Learning

36

$3

Uniform PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$3 $3

$3

$3

$3
e1

e2

e3

Input-output examples

"<a>"

"<a> "

"a"

"a b"

"<a> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Idea: partial solutions are similar in structure to solution

Our Solution: Just-in-Time Learning

37

Idea: partial solutions are similar in structure to solution

(rep (rep x '<' ' ') '>' ' ')replace-2:

$3

Uniform PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$3 $3

$3

$3

$3
e1

e2

e3

Input-output examples

"<a>"

"<a> "

"a"

"a b"

"<a> <c>" "a b c"

Our Solution: Just-in-Time Learning

38

Idea: reward productions that appear in partial solutions

$3

Uniform PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$3 $3

$3

$3

$3

(rep (rep x '<' ' ') '>' ' ')replace-2:

Our Solution: Just-in-Time Learning

39

Idea: reward productions that appear in partial solutions

Uniform PCFG
$3

S x | ' ' | '<' | '>'

rep S S S

++ S S

$3 $3

$3

$3

$3

Updated PCFG
$2

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$3

$2

$2

(rep (rep x '<' ' ') '>' ' ')replace-2:

Our Solution: Just-in-Time Learning

40

$2

Updated PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$3

$2

$2

Idea: reward productions that appear in partial solutions

(rep (rep x '<' ' ') '>' ' ')replace-2:

e1

e2

e3

Input-output examples

"<a>"

"<a> "

"a"

"a b"

"<a> <c>" "a b c"

Our Solution: Just-in-Time Learning

41

$2

Updated PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$3

$2

$2

Idea: reward productions that appear in partial solutions

e1

e2

e3

Input-output examples

"<a>"

"<a> "

"a"

"a b"

"<a> <c>" "a b c"

(rep (rep x '<' ' ') '>' ' ')replace-2:

(rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ')replace-4:

Our Solution: Just-in-Time Learning

42

Idea: reward productions that appear in partial solutions

$2

Updated PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$3

$2

$2

(rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ')replace-4:

Our Solution: Just-in-Time Learning

43

Idea: reward productions that appear in partial solutions

$2

Updated PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$3

$2

$2 $2

Biased PCFG

S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2

(rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ')replace-4:

44

Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

45

Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

(rep (rep x '<' ' ') '>' ' ')replace-2:

46

Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

(rep (rep x '<' ' ') '>' ' ')replace-2:

47

Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

(rep (rep x '<' ' ') '>' ' ')replace-2:

48

Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

Observation: Avoid rewarding irrelevant partial solutions

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

49

Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

Observation: Avoid rewarding irrelevant partial solutions

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Idea: cheapest partial solutions that satisfy new subset of examples

Talk Outline

50

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Unguided Search Techniques

51

rep S S S

++ S S

S x |' '|'<' |'>'
Top-down search Bottom-up search

S

x

' '
'>' '<'

rep S S S

++ S S

x ' ' '>' '<'

++ ++

++ ++++

rep rep

++….. …..

Observational Equivalence Reduction

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)

Unguided Search Techniques

52

rep S S S

++ S S

S x |' '|'<' |'>'
Top-down search Bottom-up search

S

x

' '
'>' '<'

rep S S S

++ S S

x ' ' '>' '<'

++ ++

++ ++++

rep rep

++….. …..

Observational Equivalence Reduction

x

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)

Unguided Search Techniques

53

rep S S S

++ S S

S x |' '|'<' |'>'
Top-down search Bottom-up search

S

x

' '
'>' '<'

rep S S S

++ S S

x ' ' '>' '<'

++ ++

++ ++++

rep rep

++….. …..++ x ' '

Observational Equivalence Reduction

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)

Unguided Search Techniques

54

rep S S S

++ S S

S x |' '|'<' |'>'
Top-down search Bottom-up search

S

x

' '
'>' '<'

rep S S S

++ S S

x ' ' '>' '<'

++ ++

++ ++++

rep rep

++….. …..rep x ' ' ' '

Observational Equivalence ReductionObservational Equivalence Reduction

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)

Unguided Search Techniques

55

rep S S S

++ S S

S x |' '|'<' |'>'
Top-down search Bottom-up search

S

x

' '
'>' '<'

rep S S S

++ S S

x ' ' '>' '<'

++ ++

++++

rep

++….. …..

Observational Equivalence ReductionObservational Equivalence Reduction

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)

Guided Search Techniques

56

Guided Top-down search Guided Bottom-up search

$2
S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2

x ' ' '>' '<'
$2 $2 $2 $2

rep rep
$8$8

++ ++

++ ++++
$8 $8 $8

$8 $8

++….. …..
$20S

x

' '
'>' '<'

++ S S

rep S S S

$2

$2
$2 $2

$2

$4

…..

(rep x S S)

(rep ' ' S S)
(rep '>' S S)

$4

$4
$4

Our TechniquePrior Work

Guided Search Techniques

57

$2
S x | ' ' | '<' | '>'

rep S S S

++ S S

$2 $2

$4

$2

$2

rep rep
$8$8

x ' ' '>' '<'
$2 $2 $2 $2

++ ++

++ ++++
$8 $8 $8

$8 $8

++….. …..
$20

Our Technique

Enables Equivalence Reduction

Enables Just-in-Time Learning!

Guided Bottom-up search

Talk Outline

58

 I/o examples
+ CFG

Updated PCFG

Learning

Synthesis Solution found?

Partial solutions

SyGus Problem Solution!

PROBE

1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results

Experimental Set-up: Benchmarks

59

String Manipulation Tasks

Circuit transformation tasks

BitVector Manipulation Tasks

Evaluation Metrics

60

1. Synthesis Time (Time required to find a solution)

2. Quality of solutions

Experimental Setup: Baseline

61

1. Euphony (top-down enumeration + pre-trained costs)

Synthesis Time (Probe VS Euphony)

62

String Domain

Synthesis Time (Probe VS Euphony)

63

48

23

PROBE

EuPhony

Number of Benchmarks
Solved

String Domain

Synthesis Time (Probe VS Euphony)

64

Probe is faster than Euphony on all 3 domains

String Domain

48

23

BitVector Domain

21

14

Circuit Domain

13

22

Experimental Setup: State-of-the-art Solvers

65

1. Euphony (top-down enumeration + pre-learned models)

2. CVC4 (Winner of the 2019 SyGuS competition)

Synthesis Time (Probe VS CVC4)

66

Input-Output Examples First Order Formula First Order Formula

String Domain

48

75

BitVector Domain

21

13

Circuit Domain

19
22

Synthesis Time (Probe VS CVC4)

67

Input-Output Examples
Prone to overfitting

String Domain

48

75

Solution Quality: Generalization Accuracy

68

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54

phone-5 7 100

phone-6 7 100

phone-7 7 100

phone-10 7 100

Solution Quality: Generalization Accuracy

69

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54 100%

phone-5 7 100 100%

phone-6 7 100 100%

phone-7 7 100 100%

phone-10 7 100 100%

Solution Quality: Generalization Accuracy

70

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54 100% 100%

phone-5 7 100 100% 100%

phone-6 7 100 100% 100%

phone-7 7 100 100% 7%

phone-10 7 100 100% 57%

CVC4 does not
generalize!

Solution Quality: Generalization Accuracy

71

phone-9 7 100 - 7%

univ_4 8 20 - 73%

univ_5 8 20 - 68%

univ_6 8 20 - 100%

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

CVC4 does not
generalize!

Solution Quality: Generalization Accuracy

72

PROBE 100% Average Accuracy

CVC4 68% Average Accuracy

Solution Quality: Size of Solutions

73

• Size is a surrogate for program simplicity.

• Smaller solutions are more readable and usable.

• Smaller solutions generalize well to additional examples.

Solution Quality: Size of Solutions (CVC4)

74

Scatter plot of String solution sizes (# of AST nodes)

Solution Quality: Size of Solutions (CVC4)

75

(rep (rep (rep (rep (rep (rep arg '<' ' ') '<' ' ') '<' ' ') '>' ' ') '>' ' ') '>' ' ')

Probe Solution - 19 AST nodes

(ite (contains (rep x "<" ") "<") (++ (+
+ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (rep (substr x 0 (indexof x ">" 1)) "<" ") (at x (indexof (rep x " " (rep x " " x)) "<"
1))) (rep " " (at x 1) (rep x "<" " "))) (at x (indexof (rep x "<" x) "<" (indexof x ">" 1)))) (at x (indexof (rep x " " x) ">" 1))) " ") (str.at x
(+ -1 (indexof x " " 1)))) (at (rep x " " ") 1)) (at x (indexof (rep x " " (rep x " " x)) ">" 1))) (at x (indexof (rep x "<" x) (++ ">" " ") 1)))
(at x (indexof (rep x "<" x) ">" 1))) (at (rep x ">" x) (len x))) (rep " " (at x 1) x)) (at (rep x " " x) (len x))) (at x (+ -1 (indexof (rep x
"<" ") "<" 1)))) (rep " " (str.at x 1) ">")) (at x (+ 1 (indexof x "<" (indexof x ">" 1))))) (rep (at x 1) " " (rep x "<" ">"))) (at x (indexof
(rep x " " x) " " 1))) (at x (- -1 (- 1 (indexof x ">" 1))))) (at x (indexof (rep x " " (rep x ">" x)) ">" 1))) (at x (+ -1 (indexof (rep x "<" ")
"<" 1)))) (at x (indexof (++ (rep x ">" ") ">") ">" 1))) (rep " " (at x 1) (++ x x))) (at x (+ 1 (+ 1 (indexof x "<" 1))))) (at x (indexof (rep
x " " (rep x ">" ")) ">" 1))) (rep " " (at x 1) (rep x ">" "))) (at x (+ 1 (indexof (rep x " " "<") " " 1)))) (rep " " (at x 1) (rep x "<" x))) (at x
(indexof (rep x " " x) "<" (indexof x ">" 1)))) (at x (indexof (rep x "<" x) (++ ">" " ") 1))) (at (rep x " " x) (+ -1 (len x)))) (at (rep x " "
x) (len x))) (at (rep x " " x) (+ 1 (len x)))) (at (rep x " " x) (indexof x ">" 1))) (at x (+ -1 (len x)))) (rep (rep x "<" ") ">" "))

CVC4 Solution - 380 AST nodes!

http://str.at/
http://str.at/

Evaluation Conclusion

76

1. Probe outperforms Euphony on all 3 domains

2. CVC4 solutions - 2 orders of magnitude larger than Probe’s

77

Conclusion

Just-in-Time Learning + Bottom-up Search - works well!

1. Guided Bottom-up search enumerates programs in the order of cost.

2. On-the-fly guidance is obtained from just-in-time learning.

3. Solutions generated are readable and generalize across 3 domains.

https://github.com/shraddhabarke/probe.git

https://github.com/shraddhabarke/probe.git

78

Grammar Statistics

79

 Domain Operations Literals Variables

 String Domain 16 11 1

 BitVector Domain 17 3 1

 Circuit Domain 4 0 6

79

String Domain Grammar

80

BitVector Domain Grammar

81

Circuit Domain Grammar

82

83

Synthesis Time (Probe VS Traditional Synthesis)

84

Synthesis Time (Probe VS Traditional Synthesis)

Program Size (Probe VS Traditional Synthesis)

85

String Domain BitVector Domain Circuit Domain

Partial Solution Selection Strategies

86

• Largest Subset - Single cheapest program that satisfies the largest subset of examples

• First Cheapest - Single cheapest program that satisfies a unique subset of examples

• All Cheapest - All cheapest programs that satisfy a unique subset of examples

Partial Solution Selection Strategies

87

TF-Coder results

88

