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Goal : remove angle brackets < and > from the input string x
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Traditional Program Synthesis
Search strategy: explore programs in order of size
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Traditional Program Synthesis

Program SpaceSpecification

Program

>30 million programs

Search strategy: explore programs in order of size
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Traditional Program Synthesis

Program SpaceSpecification

Program

>30 million programs

Timeout after 20 minutes

Search strategy: explore programs in order of size
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1Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating 
search-based program synthesis using learned probabilistic models. PLDI 2018

Search strategy: explore programs in order of cost1
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Guided Program Synthesis
Search strategy: explore programs in order of cost

Input-output examples

"<a>" "a"

"<a> <b>" "a b"

"<a> <b> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Guided Synthesizer Context-free Grammar

rep   S S S 
++   S S 

S x |  ' '  |  '<'  |  '>'                
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Guided Program Synthesis
Search strategy: explore programs in order of cost

Guided Synthesizer PCFG
$2

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> <b>" "a b"

"<a> <b> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:
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Guided Program Synthesis
Search strategy: explore programs in order of cost

Guided Synthesizer PCFG
$2

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> <b>" "a b"

"<a> <b> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

130K programs



Guided Program Synthesis: Challenges

1. How to learn useful costs? 

2. How to guide search given costs?
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Search strategy: explore programs in order of cost
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Guided Program Synthesis: Challenges

Prior Work Our Technique

1. How to learn useful costs? 

2. How to guide search given costs?

1. Data-driven learning  1. Just-in-time learning from partial solutions



24

Guided Program Synthesis: Challenges

Prior Work

1. How to learn useful costs? 

2. How to guide search given costs?

1. Data-driven learning  

2. Guided Top-down search 2. Guided Bottom-up search

Our Technique

1. Just-in-time learning from partial solutions
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PROBE finds solution in 5 seconds!

Goal : remove angle brackets < and > from the input string x

SyGuS Example (remove-angles)

Guided Synthesizer PCFG
$2

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2
Input-output examples

"<a>" "a"

"<a> <b>" "a b"

"<a> <b> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:
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1. Just-in-Time Learning 2. Guided Bottom-Up Search

3. Evaluation Results
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Idea: partial solutions are similar in structure to the solution 
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$3

Uniform PCFG

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$3 $3

$3

$3

$3
e1

e2

e3

Input-output examples

"<a>"

"<a> <b>"

"a"

"a b"

"<a> <b> <c>" "a b c"

(rep (rep (rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ') '<' ' ') '>' ' ') Solution:

Idea: partial solutions are similar in structure to solution 
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Idea: partial solutions are similar in structure to solution 

(rep (rep x '<' ' ') '>' ' ')replace-2:
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Idea: reward productions that appear in partial solutions 
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Idea: reward productions that appear in partial solutions 

Uniform PCFG
$3

S x |  ' '  |  '<'  |  '>'                

rep   S S S 
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$3 $3
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Updated PCFG
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$2 $2

$3

$2
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(rep (rep x '<' ' ') '>' ' ')replace-2:
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Updated PCFG
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$2

Updated PCFG

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$3

$2

$2

Idea: reward productions that appear in partial solutions 

e1

e2

e3

Input-output examples

"<a>"
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"a"
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(rep (rep x '<' ' ') '>' ' ')replace-2:
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Idea: reward productions that appear in partial solutions 
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Idea: reward productions that appear in partial solutions 

$2

Updated PCFG

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$3

$2

$2 $2

Biased PCFG

S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2

(rep (rep (rep (rep x '<' ' ') '>' ' ') '<' ' ') '>' ' ')replace-4:
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Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!
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Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

(rep (rep x '<' ' ') '>' ' ')replace-2:
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Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')
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Partial Solution Selection

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

(rep (rep x '<' ' ') '>' ' ')replace-2:
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Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

Observation: Avoid rewarding irrelevant partial solutions

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')
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Partial Solution Selection

Challenge: Too many redundant partial solutions

3500 even for the tiny grammar!

Observation: Avoid rewarding irrelevant partial solutions

Redundant Partial Solution: (rep (rep (rep (++ x '<') '<' ' ') '<' ' ') '>' ' ')

Idea: cheapest partial solutions that satisfy new subset of examples 
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rep S S S 

++ S S 

S x |' '|'<' |'>'   
Top-down search Bottom-up search

S 
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' '
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rep S S S 
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x ' ' '>' '<'
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++ ++++
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++….. …..

Observational Equivalence Reduction

(++ x S)
(++ ' ' S)

(++ '>' S)

…..(++ x S)
(++ ' ' S)

(++ '>' S)
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rep S S S 
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rep S S S 
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Guided Top-down search Guided Bottom-up search

$2
S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2

x ' ' '>' '<'
$2 $2 $2 $2

rep rep
$8$8

++ ++

++ ++++
$8 $8 $8

$8 $8

++….. …..
$20S 

x

' '
'>' '<'

++ S S 

rep S S S 

$2

$2
$2 $2

$2

$4

…..

(rep x S S)

(rep ' ' S S)
(rep '>' S S)

$4

$4
$4

Our TechniquePrior Work
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$2
S x |  ' '  |  '<'  |  '>'                

rep   S S S 

++   S S 

$2 $2

$4

$2

$2

rep rep
$8$8

x ' ' '>' '<'
$2 $2 $2 $2

++ ++

++ ++++
$8 $8 $8

$8 $8

++….. …..
$20

Our Technique

Enables Equivalence Reduction

Enables Just-in-Time Learning!

Guided Bottom-up search
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String Manipulation Tasks

Circuit transformation tasks

BitVector Manipulation Tasks



Evaluation Metrics
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1. Synthesis Time (Time required to find a solution)

2. Quality of solutions



Experimental Setup: Baseline
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1. Euphony (top-down enumeration + pre-trained costs)



Synthesis Time (Probe VS Euphony)
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String Domain



Synthesis Time (Probe VS Euphony)
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48

23

PROBE

EuPhony

Number of Benchmarks
Solved

String Domain



Synthesis Time (Probe VS Euphony)
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Probe is faster than Euphony on all 3 domains

String Domain

48

23

BitVector Domain

21

14

Circuit Domain

13

22



Experimental Setup: State-of-the-art Solvers
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1. Euphony (top-down enumeration + pre-learned models)

2. CVC4 (Winner of the 2019 SyGuS competition)



Synthesis Time (Probe VS CVC4)
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Input-Output Examples First Order Formula First Order Formula

String Domain

48

75

BitVector Domain

21

13

Circuit Domain

19
22



Synthesis Time (Probe VS CVC4)
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Input-Output Examples
Prone to overfitting

String Domain

48

75
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Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54

phone-5 7 100

phone-6 7 100

phone-7 7 100

phone-10 7 100
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Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54 100%
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Solution Quality: Generalization Accuracy

70

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

initials 4 54 100% 100%

phone-5 7 100 100% 100%

phone-6 7 100 100% 100%

phone-7 7 100 100% 7%

phone-10 7 100 100% 57%

CVC4 does not 
generalize!
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phone-9 7 100 - 7%

univ_4 8 20 - 73%

univ_5 8 20 - 68%

univ_6 8 20 - 100%

Benchmark Training Examples Testing Examples Probe Accuracy CVC4 Accuracy

CVC4 does not 
generalize!
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PROBE  100% Average Accuracy

CVC4    68% Average Accuracy
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• Size is a surrogate for program simplicity.

• Smaller solutions are more readable and usable.

• Smaller solutions generalize well to additional examples.



Solution Quality: Size of Solutions (CVC4)
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Scatter plot of String solution sizes (# of AST nodes)



Solution Quality: Size of Solutions (CVC4)
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(rep (rep (rep (rep (rep (rep arg '<' ' ') '<' ' ') '<' ' ') '>' ' ') '>' ' ') '>' ' ') 

Probe Solution - 19 AST nodes

(ite (contains (rep x "<" ") "<") (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (+
+ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (++ (rep (substr x 0 (indexof x ">" 1)) "<" ") (at x (indexof (rep x " " (rep x " " x)) "<" 
1))) (rep " " (at x 1) (rep x "<" " "))) (at x (indexof (rep x "<" x) "<" (indexof x ">" 1)))) (at x (indexof (rep x " " x) ">" 1))) " ") (str.at x 
(+ -1 (indexof x " " 1)))) (at (rep x " " ") 1)) (at x (indexof (rep x " " (rep x " " x)) ">" 1))) (at x (indexof (rep x "<" x) (++ ">" " ") 1))) 
(at x (indexof (rep x "<" x) ">" 1))) (at (rep x ">" x) (len x))) (rep " " (at x 1) x)) (at (rep x " " x) (len x))) (at x (+ -1 (indexof (rep x 
"<" ") "<" 1)))) (rep " " (str.at x 1) ">")) (at x (+ 1 (indexof x "<" (indexof x ">" 1))))) (rep (at x 1) " " (rep x "<" ">"))) (at x (indexof 
(rep x " " x) " " 1))) (at x (- -1 (- 1 (indexof x ">" 1))))) (at x (indexof (rep x " " (rep x ">" x)) ">" 1))) (at x (+ -1 (indexof (rep x "<" ") 
"<" 1)))) (at x (indexof (++ (rep x ">" ") ">") ">" 1))) (rep " " (at x 1) (++ x x))) (at x (+ 1 (+ 1 (indexof x "<" 1))))) (at x (indexof (rep 
x " " (rep x ">" ")) ">" 1))) (rep " " (at x 1) (rep x ">" "))) (at x (+ 1 (indexof (rep x " " "<") " " 1)))) (rep " " (at x 1) (rep x "<" x))) (at x 
(indexof (rep x " " x) "<" (indexof x ">" 1)))) (at x (indexof (rep x "<" x) (++ ">" " ") 1))) (at (rep x " " x) (+ -1 (len x)))) (at (rep x " " 
x) (len x))) (at (rep x " " x) (+ 1 (len x)))) (at (rep x " " x) (indexof x ">" 1))) (at x (+ -1 (len x)))) (rep (rep x "<" ") ">" "))

CVC4 Solution - 380 AST nodes!

http://str.at/
http://str.at/


Evaluation Conclusion
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1. Probe outperforms Euphony on all 3 domains

2. CVC4 solutions - 2 orders of magnitude larger than Probe’s
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Conclusion

Just-in-Time Learning + Bottom-up Search - works well! 

1. Guided Bottom-up search enumerates programs in the order of cost.

2. On-the-fly guidance is obtained from just-in-time learning.

3. Solutions generated are readable and generalize across 3 domains.

https://github.com/shraddhabarke/probe.git

https://github.com/shraddhabarke/probe.git
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Grammar Statistics
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   Domain  Operations      Literals     Variables

   String Domain 16 11 1

  BitVector Domain 17 3 1

 Circuit Domain 4 0 6
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String Domain Grammar
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BitVector Domain Grammar
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Circuit Domain Grammar
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Synthesis Time (Probe VS Traditional Synthesis)
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Synthesis Time (Probe VS Traditional Synthesis)



Program Size (Probe VS Traditional Synthesis)
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String Domain BitVector Domain Circuit Domain



Partial Solution Selection Strategies
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• Largest Subset - Single cheapest program that satisfies the largest subset of examples

• First Cheapest - Single cheapest program that satisfies a unique subset of examples

• All Cheapest - All cheapest programs that satisfy a unique subset of examples



Partial Solution Selection Strategies

87



TF-Coder results
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