

1

Constraint-based Learning of Phonological Processes

Shraddha Barke, Rose Kunkel, Eric Meinhardt, Nadia Polikarpova, Eric Bakovic, Leon Bergen

UC San Diego

ENGLISH VERBS PAST TENSE

zip is phonetically [zIp] beg is phonetically [b&g]

[zIpt] (zipped)

[b&gd] (begged)

3

ENGLISH VERBS PAST TENSE

zip is phonetically [zIp] beg is phonetically [b&g]

$$/zIp + d/ \rightarrow [zIpt]$$

(zipped)

$$b\varepsilon g + d / \rightarrow [b\varepsilon gd]$$

(begged)

zip is phonetically [zIp] beg is phonetically [b&g]

ENGLISH VERBS PAST TENSE

/zIp + d/ → [zIpt] /bɛɡ + d/ → [bɛgd]

 $/d/ \rightarrow [t]$ if it occurs after voiceless sounds

zip is phonetically [zIp] beg is phonetically [b&g]

$/zIp + d/ \rightarrow [zIpt]$ $/bEg + d/ \rightarrow [bEgd]$

RESEARCH PROBLEM

Automatic Inference of Phonological rules

 $/d/ \rightarrow [t]$ if it occurs after voiceless sounds

WORD FORMS

$$/zIp + d/ \rightarrow [zIpt]$$

$$/bEg + d/ \rightarrow [bEgd]$$

 $/\text{stem} + \text{suffix} / \rightarrow [\text{surface form}]$

WORD FORMS

$$/zIp + d/ \rightarrow [zIpt]$$

$$/bEg + d/ \rightarrow [bEgd]$$

 $/\underline{stem + suffix} / \rightarrow [surface form]$

WORD FORMS

$$/zIp + d/ \rightarrow [zIpt]$$

$$/bEg + d/ \rightarrow [bEgd]$$

/underlying form/ \rightarrow [surface form]

PHONOLOGICAL PROCESS

Goal – Infer function from the underlying form to surface form.

$\mathbf{A} \rightarrow \mathbf{B} \ / \ \mathbf{L} \ \mathbf{R}$

Any sound that matches A and occurs between sounds that match left context L and right context R will be rewritten to B.

Surface forms $A \rightarrow B / L _ R$ [zIpt] $/d/ \rightarrow [t] / [p] _ Ø$ [bEgd]No change[zIps] $/z/ \rightarrow [s] / [p] _ Ø$ [bEgz]No change

 $/d/, /z/ \rightarrow [t], [s] / [p] _ \emptyset$

 $/d/, /z/ \rightarrow [t], [s] / [p] _ ø$ voiceless

$$/d/, /z/ \rightarrow [t], [s] / [p] _ ø$$

[-voice]

 $/d/, /z/ → [t], [s] / [p] _ Ø$ [-sonorant] → [-voice]

$$\frac{/d/, /z/}{[-sonorant]} \rightarrow [-voice] / [-voice] _ ø$$

OUTLINE

- 1. Problem Statement
- 2. Our Solution
- 3. Experimental Results

SYNTHESIS OF PHONOLOGICAL RULES

SYPHON 🖨

PEDAGOGICAL DATA SYPHON RULES

PAST TENSE	PRESENT TENSE
zIpt	zIps
bɛg <mark>d</mark>	b&g <mark>z</mark>
rod	roz
līvd	līvz
æskt	æsks

SYPHON 🖨

PEDAGOGICAL DATA

PAST TENSE	PRESENT TENSE
zIp + d	zIp + z
bɛg + <mark>d</mark>	bɛg + <mark>z</mark>
ro + <mark>d</mark>	ro + <mark>z</mark>
lıv + d	$ \mathbf{Iv} + \mathbf{z} $
æsk + d	æsk + z

PAST TENSE	PRESENT TENSE
zIpt	zIps
b8g <mark>d</mark>	bɛg <mark>z</mark>
rod	roz
lIv <mark>d</mark>	līvz
æskt	æsks

SYPHON 🖨

$[-sonorant] \rightarrow [-voice] / [-voice] _$

PAST TENSE	PRESENT TENSE
zIp + d	zIp + z
bɛg + <mark>d</mark>	bεg + <mark>z</mark>
ro + <mark>d</mark>	ro + <mark>z</mark>
lıv + d	lıv + z
æsk + d	æsk + z

PAST TENSE	PRESENT TENSE
zIpt	zIps
bɛg <mark>d</mark>	bɛg <mark>z</mark>
rod	roz
līvd	līvz
æskt	æsks

RESEARCH GOALS

- 1. Interpretability Inferred rules should be human readable
- 2. Data efficiency Few shot learning
- 3. Interactivity Inference at interactive speeds

INTERPRETABILITY AND INTERACTIVITY

MOTIVATION

Phonologists spend lot of time manually analyzing language datasets

INTERPRETABILITY AND INTERACTIVITY

MOTIVATION

Phonologists spend lot of time manually analyzing language datasets

OUR SOLUTION

Automated approach to phonological rule inference

DATA EFFICIENCY

OUTLINE

Problem Statement
 Our Solution

3. Experimental Results

OBJECTIVE FUNCTION

$$F(\mathbf{R}, \mathbf{U}, X) = \begin{cases} \text{length}(\mathbf{R}) + \text{fit}(\mathbf{R}, \mathbf{U}, X) & \text{if consistent}(\mathbf{R}, \mathbf{U}, X) \\ \infty & \text{otherwise} \end{cases}$$

- *R* Rules
- U Underlying forms
- *X* Surface forms

$$\mathsf{OBJECTIVE FUNCTION}$$

$$\mathsf{Correctness}_{constraint}$$

$$\mathsf{F}(\mathbf{R}, \mathbf{U}, X) = \begin{cases} \operatorname{length}(\mathbf{R}) + \operatorname{fit}(\mathbf{R}, \mathbf{U}, X) & \operatorname{if \ consistent}(\mathbf{R}, \mathbf{U}, X) \\ \infty & \operatorname{otherwise} \end{cases}$$

- *R* Rules
- *U* Underlying forms
- *X* Surface forms

- *R* Rules
- U Underlying forms
- X Surface forms

OBJECTIVE FUNCTION SIMPLICITY

OBJECTIVE FUNCTION SIMPLICITY

OBJECTIVE FUNCTION SPECIFICITY

OBJECTIVE FUNCTION SPECIFICITY

RESEARCH GOALS

- 1. Interpretability Inferred rules should be human readable
- 2. Data efficiency Few shot learning
- 3. Interactivity Inference at interactive speeds

RESEARCH GOALS

 Interpretability - Inferred rules should be human readable

- ✓2. Data efficiency Few shot learning
 - 3. Interactivity Inference at interactive speeds

CONSTRAINT BASED PROGRAM SYNTHESIS

CONSTRAINT BASED PROGRAM SYNTHESIS

CONSTRAINT BASED PROGRAM SYNTHESIS

 $|U| = 90^{34}$ Distance (U, X)

OUR CONTRIBUTION

- 1. Decomposition of the rule learning problem
 - 1. Underlying form inference
 - 2. Change inference
 - 3. Condition inference

OUR CONTRIBUTION

- 1. Decomposition of the rule learning problem
 - 1. Underlying form inference
 - 2. Change inference
 - 3. Condition inference
- 2. Efficient SMT encoding

RESEARCH GOALS

Interpretability – Represent rules as programs
Data efficiency – Hard constraints
Interactivity – Novel problem decomposition and efficient SMT encoding

OUTLINE

Problem Statement
Our Solution

3. Experimental Results

EXPERIMENTAL DATA

Textbook Problems : 34 (~20 Datapoints)
Lexical Datasets : 2 (~6000 Datapoints)

RUSSIAN TEXTBOOK PROBLEM (ODDEN 2015)

Gen. Plural	Nom. Singular	
vagon	vagona	
xlep	xleba	
ras	raza	
porok	poroga	
soldat	soldata	
golo <mark>s</mark>	golo <mark>s</mark> a	

RUSSIAN DEVOICING RULE

/b/, /z/, /g/
$$\rightarrow$$
 [p] , [s], [k] / _ #

 $[-sonorant] \rightarrow [-voice] / _ #$

LEXICAL DATASETS

1. English Flapping

Processed CMU pronouncing dictionary to create underlying and surface form pairs exemplifying flapping.

2. English Verbs

Combined morphological information extracted from CELEX-2 with CMU transcriptions to create a database of regular verbs.

ENGLISH VERB RULES

Devoicing rule [-sonorant] \rightarrow [-voice] / [-voice] _

Insertion rule $\boldsymbol{\varnothing} \rightarrow \boldsymbol{\varTheta} / [\alpha \text{strident}] _ [\alpha \text{strident}]$

TEXTBOOK PROBLEM LANGUAGES

EVALUATION METRICS

Learn rule set

from 20, 50

and 100

data points

	Accuracy	Rule Match	
	Accuracy	Precision	Recall
Flap 20	76	50	31
Flap 50	93	86	86
Flap 100	100	100	100
Verb 20	86	48	83
Verb 50	88	52	92
Verb 100	95	62	100

EVALUATION METRICS

EVALUATION TEXTBOOK PROBLEMS

Classes of textbook problems of different complexity

	Accuracy	Rule Match	
	Accuracy	Precision	Recall
10 MAT	100	70	77
20 ALT	100	66	71
4 SUP	100	63	71
10 TEST	100	54	61

EVALUATION TEXTBOOK PROBLEMS

Classes of textbook problems of different complexity

	Accuracy	Rule Match	
	Accuracy	Precision	Recall
10 MAT	100	70	77
20 ALT	100	66	71
4 SUP	100	63	71
10 TEST	100	54	61

Held out test problems

EVALUATION TEXTBOOK PROBLEMS

Classes of textbook problems of different complexity

		Accuracy	Rule Match	
		Accuracy	Precision	Recall
-	10 MAT	100	70	77
	20 ALT	100	66	71
	4 SUP	100	63	71
	10 TEST	100	54	61

Held out test problems

INFERENCE TIME SPEEDUP

SYPHON = BASELINE $/ 10^{2}$

	Inference Time (secs)			
	SyPhon	Baseline	Speedup	
MAT	30.0	3100	124.6	
Alt	10.7	N/A	N/A	
SUP	5.3	6333	378.3	
TEST	8.3	N/A	N/A	

INFERENCE TIME SPEEDUP

SYPHON = BASELINE $/ 10^{2}$

Interactive Speeds!

CONCLUSION

- Novel problem decomposition leads to interactivity
- 2. Phonologists can use our system for automated scientific investigation

QUESTIONS?

- Novel problem decomposition leads to interactivity
- 2. Phonologists can use our system for automated scientific investigation

STRING TRANSDUCERS

Ex: batter

Underlying:

b ae1 dx er

STRING TRANSDUCERS

Figure 18 Flapping transducer induced from 50,000 samples (same as Figure 14).